• International Journal of Extreme Manufacturing
  • Vol. 6, Issue 1, 15501 (2024)
Qiang Liu1,2, Wei Xu1,2, Xiaoxi Li3,4, Tongyao Zhang3,4..., Chengbing Qin4,5, Fang Luo1,2, Zhihong Zhu1,2, Shiqiao Qin1,2, Mengjian Zhu1,2,* and Kostya S Novoselov6,7|Show fewer author(s)
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, People’s Republic of China
  • 2Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, People’s Republic of China
  • 3State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, People’s Republic of China
  • 4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, People’s Republic of China
  • 5State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, People’s Republic of China
  • 6Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
  • 7Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
  • show less
    DOI: 10.1088/2631-7990/acfbc2 Cite this Article
    Qiang Liu, Wei Xu, Xiaoxi Li, Tongyao Zhang, Chengbing Qin, Fang Luo, Zhihong Zhu, Shiqiao Qin, Mengjian Zhu, Kostya S Novoselov. Electrically-driven ultrafast out-of-equilibrium light emission from hot electrons in suspended graphene/hBN heterostructures[J]. International Journal of Extreme Manufacturing, 2024, 6(1): 15501 Copy Citation Text show less
    References

    [1] Shalf J 2020 The future of computing beyond Moore’s law Phil. Trans. R. Soc. A 378 20190061

    [2] Heck M J, Bauters J F, Davenport M L, Doylend J K, Jain S, Kurczveil G, Srinivasan S, Tang Y B and Bowers J E 2013 Hybrid silicon photonic integrated circuit technology IEEE J. Sel. Top. Quantum Electron. 19 6100117

    [3] Bogaerts W, Pérez D, Capmany J, Miller D A B, Poon J, Englund D, Morichetti F and Melloni A 2020 Programmable photonic circuits Nature 586 207–16

    [4] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Graphene photonics and optoelectronics Nat. Photon. 4 611–22

    [5] Romagnoli M, Sorianello V, Midrio M, Koppens F H L, Huyghebaert C, Neumaier D, Galli P, Templ W, D’errico A and Ferrari A C 2018 Graphene-based integrated photonics for next-generation datacom and telecom Nat. Rev. Mater. 3 392–414

    [6] Akinwande D, Huyghebaert C, Wang C H, Serna M I, Goossens S, Li L J, Wong H S P and Koppens F H L 2019 Graphene and two-dimensional materials for silicon technology Nature 573 507–18

    [7] Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S and Polini M 2014 Photodetectors based on graphene, other two-dimensional materials and hybrid systems Nat. Nanotechnol. 9 780–93

    [8] Xia F N, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Ultrafast graphene photodetector Nat. Nanotechnol. 4 839–43

    [9] Gan X T, Shiue R J, Gao Y D, Meric I, Heinz T F, Shepard K, Hone J, Assefa S and Englund D 2013 Chip-integrated ultrafast graphene photodetector with high responsivity Nat. Photon. 7 883–7

    [10] Mueller T, Xia F N and Avouris P 2010 Graphene photodetectors for high-speed optical communications Nat. Photon. 4 297–301

    [11] Pospischil A, Humer M, Furchi M M, Bachmann D, Guider R, Fromherz T and Mueller T 2013 CMOS-compatible graphene photodetector covering all optical communication bands Nat. Photon. 7 892–6

    [12] Yoshioka K, Wakamura T, Hashisaka M, Watanabe K, Taniguchi T and Kumada N 2022 Ultrafast intrinsic optical-to-electrical conversion dynamics in a graphene photodetector Nat. Photon. 16 718–23

    [13] Koepfli S M et al 2023 Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz Science 380 1169–74

    [14] Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F and Zhang X 2011 A graphene-based broadband optical modulator Nature 474 64–67

    [15] Liu M, Yin X B and Zhang X 2012 Double-layer graphene optical modulator Nano Lett. 12 1482–5

    [16] Phare C T, Daniel Lee Y H, Cardenas J and Lipson M 2015 Graphene electro-optic modulator with 30 GHz bandwidth Nat. Photon. 9 511–4

    [17] Agarwal H et al 2021 2D-3D integration of hexagonal boron nitride and a high-κ dielectric for ultrafast graphene-based electro-absorption modulators Nat. Commun. 12 1070

    [18] Heidari E, Dalir H, Koushyar F M, Nouri B M, Patil C, Miscuglio M, Akinwande D and Sorger V J 2022 Integrated ultra-high-performance graphene optical modulator Nanophotonics 11 4011–6

    [19] Dalir H, Xia Y, Wang Y and Zhang X 2016 Athermal broadband graphene optical modulator with 35 GHz speed ACS Photonics 3 1564–8

    [20] Sorianello V, Midrio M, Contestabile G, Asselberghs I, van Campenhout J, Huyghebaert C, Goykhman I, Ott A K, Ferrari A C and Romagnoli M 2018 Graphene–silicon phase modulators with gigahertz bandwidth Nat. Photon. 12 40–44

    [21] Youngblood N, Anugrah Y, Ma R, Koester S J and Li M 2014 Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides Nano Lett. 14 2741–6

    [22] Lui C H, Mak K F, Shan J and Heinz T F 2010 Ultrafast photoluminescence from graphene Phys. Rev. Lett. 105 127404

    [23] Huang D et al 2018 Gate switching of ultrafast photoluminescence in graphene Nano Lett. 18 7985–90

    [24] Mak K F, Ju L, Wang F and Heinz T F 2012 Optical spectroscopy of graphene: from the far infrared to the ultraviolet Solid State Commun. 152 1341–9

    [25] Paul K K, Kim J H and Lee Y H 2021 Hot carrier photovoltaics in van der Waals heterostructures Nat. Rev. Phys. 3 178–92

    [26] Rezaeifar F, Ahsan R, Lin Q F, Chae H U and Kapadia R 2019 Hot-electron emission processes in waveguide-integrated graphene Nat. Photon. 13 843–8

    [27] Kim L, Kim S, Jha P K, Brar V W and Atwater H A 2021 Mid-infrared radiative emission from bright hot plasmons in graphene Nat. Mater. 20 805–11

    [28] Freitag M, Chiu H Y, Steiner M, Perebeinos V and Avouris P 2010 Thermal infrared emission from biased graphene Nat. Nanotechnol. 5 497–501

    [29] Berciaud S, Han M Y, Mak K F, Brus L E, Kim P and Heinz T F 2010 Electron and optical phonon temperatures in electrically biased graphene Phys. Rev. Lett. 104 227401

    [30] Chae D H, Krauss B, von Klitzing K and Smet J H 2010 Hot phonons in an electrically biased graphene constriction Nano Lett. 10 466–71

    [31] Luxmoore I J, Adlem C, Poole T, Lawton L M, Mahlmeister N H and Nash G R 2013 Thermal emission from large area chemical vapor deposited graphene devices Appl. Phys. Lett. 103 131906

    [32] Miyoshi Y, Fukazawa Y, Amasaka Y, Reckmann R, Yokoi T, Ishida K, Kawahara K, Ago H and Maki H 2018 High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer Nat. Commun. 9 1279

    [33] Kim Y D et al 2015 Bright visible light emission from graphene Nat. Nanotechnol. 10 676–81

    [34] Dorgan V E, Behnam A, Conley H J, Bolotin K I and Pop E 2013 High-field electrical and thermal transport in suspended graphene Nano Lett. 13 4581–6

    [35] Chen C Y, Rosenblatt S, Bolotin K I, Kalb W, Kim P, Kymissis I, Stormer H L, Heinz T F and Hone J 2009 Performance of monolayer graphene nanomechanical resonators with electrical readout Nat. Nanotechnol. 4 861–7

    [36] Kim Y D et al 2018 Ultrafast graphene light emitters Nano Lett. 18 934–40

    [37] Barnard H R, Zossimova E, Mahlmeister N H, Lawton L M, Luxmoore I J and Nash G R 2016 Boron nitride encapsulated graphene infrared emitters Appl. Phys. Lett. 108 131110

    [38] Son S K et al 2017 Graphene hot-electron light bulb: incandescence from hBN-encapsulated graphene in air 2D Mater. 5 011006

    [39] Luo F et al 2019 Graphene thermal emitter with enhanced joule heating and localized light emission in air ACS Photonics 6 2117–25

    [40] Shiue R J, Gao Y D, Tan C, Peng C, Zheng J B, Efetov D K, Kim Y D, Hone J and Englund D 2019 Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity Nat. Commun. 10 109

    [41] Zhang T Y et al 2022 A monolithically sculpted van der Waals nano-opto-electro-mechanical coupler Light Sci. Appl. 11 48

    [42] Wang L et al 2013 One-dimensional electrical contact to a two-dimensional material Science 342 614–7

    [43] Falin A et al 2017 Mechanical properties of atomically thin boron nitride and the role of interlayer interactions Nat. Commun. 8 15815

    [44] Dean C R et al 2010 Boron nitride substrates for high-quality graphene electronics Nat. Nanotechnol. 5 722–6

    [45] Fong K C, Wollman E E, Ravi H, Chen W, Clerk A A, Shaw M D, Leduc H G and Schwab K C 2013 Measurement of the electronic thermal conductance channels and heat capacity of graphene at low temperature Phys. Rev. X 3 041008

    [46] Kokkoniemi R et al 2020 Bolometer operating at the threshold for circuit quantum electrodynamics Nature 586 47–51

    [47] Massicotte M, Soavi G, Principi A and Tielrooij K J 2021 Hot carriers in graphene—fundamentals and applications Nanoscale 13 8376–411

    [48] Ferrari A C and Basko D M 2013 Raman spectroscopy as a versatile tool for studying the properties of graphene Nat. Nanotechnol. 8 235–46

    [49] Pop E, Varshney V and Roy A K 2012 Thermal properties of graphene: fundamentals and applications MRS Bull. 37 1273–81

    [50] Kumar A, Low T, Fung K H, Avouris P and Fang N X 2015 Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system Nano Lett. 15 3172–80

    [51] Tielrooij K J et al 2018 Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling Nat. Nanotechnol. 13 41–46

    [52] Principi A, Lundeberg M B, Hesp N C H, Tielrooij K J, Koppens F H L and Polini M 2017 Super-planckian electron cooling in a van der Waals stack Phys. Rev. Lett. 118 126804

    [53] Piscanec S, Lazzeri M, Mauri F, Ferrari A C and Robertson J 2004 Kohn anomalies and electron-phonon interactions in graphite Phys. Rev. Lett. 93 185503

    [54] Sohier T, Calandra M, Park C H, Bonini N, Marzari N and Mauri F 2014 Phonon-limited resistivity of graphene by first-principles calculations: electron-phonon interactions, strain-induced gauge field, and Boltzmann equation Phys. Rev. B 90 125414

    [55] Wu S W, Liu W T, Liang X G, Schuck P J, Wang F, Shen Y R and Salmeron M 2012 Hot phonon dynamics in graphene Nano Lett. 12 5495–9

    [56] Kaasbjerg K, Thygesen K S and Jacobsen K W 2012 Unraveling the acoustic electron-phonon interaction in graphene Phys. Rev. B 85 165440

    [57] Bistritzer R and MacDonald A H 2009 Electronic cooling in graphene Phys. Rev. Lett. 102 206410

    [58] Yang W et al 2018 A graphene Zener-Klein transistor cooled by a hyperbolic substrate Nat. Nanotechnol. 13 47–52

    [59] Caldwell J D et al 2014 Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride Nat. Commun. 5 5221

    [60] Low T, Perebeinos V, Kim R, Freitag M and Avouris P 2012 Cooling of photoexcited carriers in graphene by internal and substrate phonons Phys. Rev. B 86 045413

    [61] Cocemasov A I, Nika D L and Balandin A A 2015 Engineering of the thermodynamic properties of bilayer graphene by atomic plane rotations: the role of the out-of-plane phonons Nanoscale 7 12851–9

    Qiang Liu, Wei Xu, Xiaoxi Li, Tongyao Zhang, Chengbing Qin, Fang Luo, Zhihong Zhu, Shiqiao Qin, Mengjian Zhu, Kostya S Novoselov. Electrically-driven ultrafast out-of-equilibrium light emission from hot electrons in suspended graphene/hBN heterostructures[J]. International Journal of Extreme Manufacturing, 2024, 6(1): 15501
    Download Citation