[1] MORKO? H. Growth of nitride semiconductors[M]//Nitride Semiconductors and Devices. Berlin, Heidelberg: Springer, 1999: 83-148.
[2] YU R X, LIU G X, WANG G D, et al. Ultrawide-bandgap semiconductor AlN crystals: growth and applications[J]. J Mater Chem C, 2021, 9(6): 1852-1873.
[3] TSAO J Y, CHOWDHURY S, HOLLIS M A, et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges[J]. Adv Electr Mater, 2018, 4(1): 1600501.
[4] KNEISSL M, SEONG T Y, HAN J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies[J]. Nat Photon, 2019, 13(4): 233-244.
[5] WU H L, WU W C, ZHANG H X, et al. All AlGaN epitaxial structure solar-blind avalanche photodiodes with high efficiency and high gain[J]. Appl Phys Express, 2016, 9(5): 052103.
[6] ZHANG Z Y, KUSHIMOTO M, SAKAI T, et al. A 271.8 nm deep-ultraviolet laser diode for room temperature operation[J]. Appl Phys Express, 2019, 12(12): 124003.
[7] MACKEY T K, CONTRERAS J T, LIANG B A. The Minamata Convention on Mercury: Attempting to address the global controversy of dental amalgam use and mercury waste disposal[J]. Sci Total Environ, 2014, 472: 125-129.
[8] LIU S F, LUO W, LI D, et al. Sec-eliminating the SARS-CoV-2 by AlGaN based high power deep ultraviolet light source[J]. Adv Funct Mater, 2021, 31(7): 2008452.
[9] ZOLLNER C J, DENBAARS S P, SPECK J S, et al. Germicidal ultraviolet LEDs: A review of applications and semiconductor technologies[J]. Semicond Sci Technol, 2021, 36(12): 123001.
[10] ZHANG Dian. Preparation, structure and properties of nonstoichiometric AlN powders and high temperature epitaxial AlN layers[D]. Bei Jing: Beihang University, 2015.
[11] FU Danyang, GONG Jianchao, LEI Dan, et al. J Synth Cryst, 2020, 49(7): 1141-1156.
[12] DU L. Bulk crystal growth, characterization and thermodynamic analysis of aluminum nitride and related nitrides[D]. Lawrence: University of Kansas, 2011.
[13] SLACK G A, MCNELLY T F. Growth of high purity AlN crystals[J]. J Cryst Growth, 1976, 34(2): 263-279.
[14] DING K, AVRUTIN V, ?ZGüR ü, et al. Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes[J]. Crystals, 2017, 7(10): 300.
[15] GRANDUSKY J R, GIBB S R, MENDRICK M C, et al. Properties of mid-ultraviolet light emitting diodes fabricated from pseudomorphic layers on bulk aluminum nitride substrates[J]. Appl Phys Express, 2010, 3(7): 072103.
[16] KIM M, FUJITA T, FUKAHORI S, et al. AlGaN-based deep ultraviolet light-emitting diodes fabricated on patterned sapphire substrates[J]. Appl Phys Express, 2011, 4(9): 092102.
[17] SHATALOV M, SUN W H, LUNEV A, et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%[J]. Appl Phys Express, 2012, 5(8): 082101.
[18] SCHOWALTER L J, SCHUJMAN S B, LIU W, et al. Development of native, single crystal AlN substrates for device applications[J]. Phys Status Solidi A, 2006, 203(7): 1667-1671.
[19] WUNDERER T, CHUA C L, YANG Z H, et al. Pseudomorphically grown ultraviolet C photopumped lasers on bulk AlN substrates[J]. Appl Phys Express, 2011, 4(9): 092101.
[20] MARTENS M, MEHNKE F, KUHN C, et al. Performance characteristics of UV-C AlGaN-based lasers grown on sapphire and bulk AlN substrates[J]. IEEE Photon Technol Lett, 2014, 26(4): 342-345.
[21] LIU Y, CAI Y, ZHANG Y, et al. Materials, design, and characteristics of bulk acoustic wave resonator: A review[J]. Micromachines, 2020, 11(7): 630.
[22] SUMETS M. Thin films of lithium niobate: Potential applications, synthesis methods, structure and properties[M]//Lithium Niobate- Based Heterostructures. U.K.: IOP Publishing, 2018: 1.
[23] PINTO R M R, GUND V, DIAS R A, et al. CMOS-integrated aluminum nitride MEMS: A review[J]. J Microelectromech Syst, 2022, 31(4): 500-523.
[24] FU Y Q, LUO J K, NGUYEN N T, et al. Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications[J]. Prog Mater Sci, 2017, 89: 31-91.
[25] AKIYAMA M, KAMOHARA T, KANO K, et al. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering[J]. Adv Mater, 2009, 21(5): 593-596.
[26] CARO M A, ZHANG S Y, RIEKKINEN T, et al. Piezoelectric coefficients and spontaneous polarization of ScAlN[J]. J Phys Condens Matter, 2015, 27(24): 245901.
[27] TASNáDI F, ALLING B, H?GLUND C, et al. Origin of the anomalous piezoelectric response in wurtzite ScxAl1-xN alloys[J]. Phys Rev Lett, 2010, 104(13): 137601.
[28] MOREIRA M, BJURSTR?M J, KATARDJEV I, et al. Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications[J]. Vacuum, 2011, 86(1): 23-26.
[29] YOSHIDA S, MISAWA S, ITOH A. Epitaxial growth of aluminum nitride films on sapphire by reactive evaporation[J]. Appl Phys Lett, 1975, 26(8): 461-462.
[30] EPELBAUM B M, BICKERMANN M, NAGATA S, et al. Similarities and differences in sublimation growth of SiC and AlN[J]. J Cryst Growth, 2007, 305(2): 317-325.
[31] NOVESKI V, SCHLESSER R, RAGHOTHAMACHAR B, et al. Seeded growth of bulk AlN crystals and grain evolution in polycrystalline AlN boules[J]. J Cryst Growth, 2005, 279(1-2): 13-19.
[32] RADHAKRISHNAN SUMATHI R. Native seeding and silicon doping in bulk growth of AlN single crystals by PVT method[J]. Phys Status Solidi C, 2014, 11(3-4): 545-548.
[33] MELNIK Y, TSVETKOV D, PECHNIKOV A, et al. Characterization of AlN/SiC epitaxial wafers fabricated by hydride vapour phase epitaxy[J]. Phys Stat Sol (a), 2001, 188(1): 463-466.
[34] MELNIK Y, SOUKHOVEEV V, IVANTSOV V, et al. AlN substrates: Fabrication via vapor phase growth and characterization[J]. Phys Status Solidi A, 2003, 200(1): 22-25.
[35] KOVALENKOV O, SOUKHOVEEV V, IVANTSOV V, et al. Thick AlN layers grown by HVPE[J]. J Cryst Growth, 2005, 281(1): 87-92.
[36] ZHANG D, LIU F M, YAO Y, et al. AlN epilayers and nanostructures growth in a homebuilt alumina hot-wall high temperature chemical vapor deposition system[J]. J Mater Sci Mater Electron, 2014, 25(5): 2210-2219.
[37] ZHANG D, LIU F M, CAI L G. Investigation, characterization and effect of substrate position on thick AlN layers grown by high temperature chemical vapor deposition[J]. J Mater Sci Mater Electron, 2015, 26(2): 1239-1245.
[38] ZHANG D A, LIU F M, CAI L G. Structure, optical spectra and biaxial stress of (0002) AlN epilayers grown on c-sapphire by high-temperature chemical vapor deposition[J]. Phys Status Solidi A, 2014, 211(10): 2394-2402.
[39] YIN J H, CHEN D H, YANG H, et al. Comparative spectroscopic studies of MOCVD grown AlN films on Al2O3 and 6H-SiC[J]. J Alloys Compd, 2021, 857: 157487.
[40] MASTRO M A, EDDY C R, GASKILL D K, et al. MOCVD growth of thick AlN and AlGaN superlattice structures on Si substrates[J]. J Cryst Growth, 2006, 287(2): 610-614.
[41] CHANDRASEKARAN R, MOUSTAKAS T D, OZCAN A S, et al. Growth kinetics of AlN and GaN films grown by molecular beam epitaxy on R-plane sapphire substrates[J]. J Appl Phys, 2010, 108(4): 043501-043504.
[42] NECHAEV D V, ASEEV P A, JMERIK V N, et al. Control of threading dislocation density at the initial growth stage of AlN on c-sapphire in plasma-assisted MBE[J]. J Cryst Growth, 2013, 378: 319-322.
[43] SITAR Z, SCHLESSER R., DALMAU R, et al. Growth of AlN crystal by vaporization of Al and sublimation of AlN powder[C]//Proc. 21st Century COE Joint Workshop on Bulk Nitrides, IPAP Conf. Series 4. Tokyo, Japan, 2004: 41-45.
[44] SCHLESSER R, SITAR Z. Growth of bulk AlN crystals by vaporization of aluminum in a nitrogen atmosphere[J]. J Cryst Growth, 2002, 234(2-3): 349-353.
[45] YONEMURA M, KAMEI K, MUNETOH S. Precipitation of single crystalline AlN from Cu-Al-Ti solution under nitrogen atmosphere[J]. J Mater Sci Mater Electron, 2005, 16(4): 197-201.
[46] ADEKORE B T, RAKES K, WANG B, et al. Ammonothermal synthesis of aluminum nitride crystals on group III-nitride templates[J]. J Electron Mater, 2006, 35(5): 1104-1111.
[47] ITO S, FUJIOKA H, OHTA J, et al. Growth of AlN on lattice-matched MnO substrates by pulsed laser deposition[J]. Thin Solid Films, 2003, 435(1/2): 215-217.
[48] INOUE S, OKAMOTO K, MATSUKI N, et al. Epitaxial growth of AlN on Cu(111) substrates using pulsed laser deposition[J]. J Cryst Growth, 2006, 289(2): 574-577.
[49] RAGHAVAN S, REDWING J M. Intrinsic stresses in AlN layers grown by metal organic chemical vapor deposition on (0001) sapphire and (111) Si substrates[J]. J Appl Phys, 2004, 96(5): 2995-3003.
[50] SAHAR M A A Z M, HASSAN Z, NG S S, et al. An insight into growth transition in AlN epitaxial films produced by metal-organic chemical vapour deposition at different growth temperatures[J]. Superlattices Microstruct, 2022, 161: 107095.
[51] KITAGAWA S, MIYAKE H, HIRAMATSU K. High-quality AlN growth on 6H-SiC substrate using three dimensional nucleation by low-pressure hydride vapor phase epitaxy[J]. Jpn J Appl Phys, 2014, 53(5S1): 05FL03.
[52] ZHANG L, QI H T, CHENG H J, et al. Morphology and crystalline property of an AlN single crystal grown on AlN seed[J]. J Semicond, 2021, 42(5): 052101.
[53] NIKOLAEV A, NIKITINA I, ZUBRILOV A, et al. AlN wafers fabricated by hydride vapor phase epitaxy[J]. MRS Internet J Nitride Semicond Res, 2000, 5(1): 432-437.
[54] JEON H, LEE C M, LEE C B, et al. Thick AlN epilayer grown by using the HVPE method[J]. J Korean Phys Soc, 2015, 67(4): 643-647.
[55] KUMAGAI Y, YAMANE T, KOUKITU A. Growth of thick AlN layers by hydride vapor-phase epitaxy[J]. J Cryst Growth, 2005, 281(1): 62-67.
[56] KOUKITU A, KIKUCHI J, KANGAWA Y, et al. Thermodynamic analysis of AlGaN HVPE growth[J]. J Cryst Growth, 2005, 281(1): 47-54.
[57] BOICHOT R, CLAUDEL A, BACCAR N, et al. Epitaxial and polycrystalline growth of AlN by high temperature CVD: Experimental results and simulation[J]. Surf Coat Technol, 2010, 205(5): 1294-1301.
[58] LEDYAEV O Y, CHERENKOV A E, NIKOLAEV A E, et al. Properties of AlN layers grown on SiC substrates in wide temperature range by HVPE[J]. Phys Status Solidi C, 2003(1): 474-478.
[59] IMURA M, FUJIMOTO N, OKADA N, et al. Annihilation mechanism of threading dislocations in AlN grown by growth form modification method using V/III ratio[J]. J Cryst Growth, 2007, 300(1): 136-140.
[60] KUMAGAI Y, SHIKAUCHI H, KIKUCHI J, et al. Is it possible to grow AlN by hydride vapor phase epitaxy[C]//Proc. 21st Century COE Joint Workshop on Bulk Nitrides, the Institute of Pure and Applied Physics Conference, Series 4, Tokyo, Japan, 2004: 9-13.
[61] NAGASHIMA T, HARADA M, YANAGI H, et al. High-speed epitaxial growth of AlN above by hydride vapor phase epitaxy[J]. J Cryst Growth, 2007, 300(1): 42-44.
[62] SU X J, HUANG J, ZHANG J P, et al. Microstructure and influence of buffer layer on threading dislocations in (0001) AlN/sapphire grown by hydride vapor phase epitaxy[J]. J Cryst Growth, 2019, 515: 72-77.
[63] SON H, LEE Y, KIM J H, et al. Structural and optical properties of AlN grown on nanopillar/patterned SiO2 by hydride vapor phase epitaxy[J]. Thin Solid Films, 2017, 626: 66-69.
[64] LEE G S, LEE C M, JEON H, et al. Growth of AlN layer on patterned sapphire substrate by hydride vapor phase epitaxy[J]. Jpn J Appl Phys, 2016, 55(5S): 05FC02.
[65] BALAJI M, CLAUDEL A, FELLMANN V, et al. Effects of AlN nucleation layers on the growth of AlN films using high temperature hydride vapor phase epitaxy[J]. J Alloys Compd, 2012, 526: 103-109.
[66] XIAO S Y, JIANG N, SHOJIKI K, et al. Preparation of high-quality thick AlN layer on nanopatterned sapphire substrates with sputter-deposited annealed AlN film by hydride vapor-phase epitaxy[J]. Jpn J Appl Phys, 2019, 58(SC): SC1003.
[67] CHEN J J, SU X J, HUANG J, et al. Effect of flux rate on AlN epilayers grown by hydride vapor phase epitaxy[J]. J Cryst Growth, 2021, 555: 125960.
[68] CHEN J J, HUANG J, SU X J, et al. Influence comparison of N2 and NH3 nitrogen sources on AlN films grown by halide vapor phase epitaxy[J]. Chin Phys B, 2020, 29(7): 076802.
[69] BOICHOT R, COUDURIER N, MERCIER F, et al. Epitaxial growth of AlN on c-plane sapphire by High Temperature Hydride Vapor Phase Epitaxy: Influence of the gas phase N/Al ratio and low temperature protective layer[J]. Surf Coat Technol, 2013, 237: 118-125.
[70] HUANG J, CHEN Q J, NIU M T, et al. Investigation on halide vapor phase epitaxial growth of AlN using N2 as N source[J]. J Cryst Growth, 2020, 536: 125567.
[71] WU P, FUNATO M, KAWAKAMI Y. Environmentally friendly method to grow wide-bandgap semiconductor aluminum nitride crystals: Elementary source vapor phase epitaxy[J]. Sci Rep, 2015, 5: 17405.
[72] LI D D, CHEN J J, SU X J, et al. Preparation of AlN film grown on sputter-deposited and annealed AlN buffer layer via HVPE[J]. Chin Phys B, 2021, 30(3): 036801.
[73] CHEN J F, HUANG J, LI D D, et al. Porous AlN films grown on C-face SiC by hydride vapor phase epitaxy[J]. Chin Phys B, 2022, 31(7): 076802.
[74] CHEN J J, SU X J, HUANG J, et al. Effects of 6H-SiC substrate polarity on the morphology and microstructure of AlN films by HVPE with varied V/III ratio[J]. J Cryst Growth, 2019, 507: 196-199.
[75] SUN M S, ZHANG J C, HUANG J, et al. AlN thin film grown on different substrates by hydride vapor phase epitaxy[J]. J Cryst Growth, 2016, 436: 62-67.
[76] FUJIKURA H, KONNO T, KIMURA T, et al. AlN nanostructures and flat, void-less AlN templates formed by hydride vapor phase epitaxy on patterned sapphire substrates[J]. Appl Phys Express, 2020, 13(2): 025506.
[77] USUI A, SUNAKAWA H, SAKAI A, et al. Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy[J]. Jpn J Appl Phys, 1997, 36(7B): L899.
[78] IMURA M, NAKANO K, NARITA G, et al. Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers[J]. J Cryst Growth, 2007, 298: 257-260.
[79] LI X, ZHAO J Y, LIU T, et al. Growth of semi-polar AlN film on M-plane sapphire with high-temperature nitridation by HVPE[J]. Materials, 2021, 14(7): 1722.
[80] KUMAGAI Y, ENATSU Y, ISHIZUKI M, et al. Investigation of void formation beneath thin AlN layers by decomposition of sapphire substrates for self-separation of thick AlN layers grown by HVPE[J]. J Cryst Growth, 2010, 312(18): 2530-2536.
[81] HUANG J, NIU M T, ZHANG J C, et al. Reduction of threading dislocation density for AlN epilayer via a highly compressive-stressed buffer layer[J]. J Cryst Growth, 2017, 459: 159-162.
[82] AKIYAMA K, ARAKI T, MURAKAMI H, et al. In situ gravimetric monitoring of decomposition rate on the surface of (0001) c-plane sapphire for the high temperature growth of AlN[J]. Phys Status Solidi, 2007, 4(7): 2297-2300.
[83] SU X J, ZHANG J C, HUANG J, et al. Defect structure of high temperature hydride vapor phase epitaxy-grown epitaxial (0001) AlN/sapphire using growth mode modification process[J]. J Cryst Growth, 2017, 467: 82-87.
[84] NAGASHIMA T, HARADA M, YANAGI H, et al. Improvement of AlN crystalline quality with high epitaxial growth rates by hydride vapor phase epitaxy[J]. J Cryst Growth, 2007, 305(2): 355-359.
[85] ZHUANG D, EDGAR J H. Wet etching of GaN, AlN, and SiC: A review[J]. Mater Sci Eng R Rep, 2005, 48(1): 1-46.
[86] DELMDAHL R, P?TZEL R, BRUNE J. Large-area laser-lift-off processing in microelectronics[J]. Phys Procedia, 2013, 41: 241-248.
[87] SPECK J S, BAKER T J, HASKELL B A. Wafer separation technique for the fabrication of free-standing (Al, In, Ga)N wafers: US20060234486[P]. 2006-10-19.
[88] KIM H M, OH J E, KANG T W. Preparation of large area free-standing GaN substrates by HVPE using mechanical polishing liftoff method[J]. Mater Lett, 2001, 47(4-5): 276-280.
[89] KUMAGAI Y, KUBOTA Y, NAGASHIMA T, et al. Preparation of a freestanding AlN substrate from a thick AlN layer grown by hydride vapor phase epitaxy on a bulk AlN substrate prepared by physical vapor transport[J]. Appl Phys Express, 2012, 5(5): 055504.
[90] AKIYAMA K, MURAKAMI H, KUMAGAI Y, et al. in situ Gravimetric monitoring of decomposition rate on surface of (1012)R-plane sapphire for high-temperature growth of nonpolar AlN[J]. Jpn J Appl Phys, 2008, 47(5): 3434-3437.
[91] LIU F, CHEN K F, XUE D F. How to fast grow large-size crystalS[J]. Innovation (Camb), 2023, 4(4): 100458.