Xin-Yu Wu, Wei-Hua Han, Fu-Hua Yang. Quantum transport relating to impurity quantum dots in silicon nanostructure transistor [J]. Acta Physica Sinica, 2019, 68(8): 087301-1

Search by keywords or author
- Acta Physica Sinica
- Vol. 68, Issue 8, 087301-1 (2019)
![Confinement potential induced by ionizing impurity[19].电离杂质形成的势阱结构[19]](/Images/highlights-null.jpg)
![Structure and schematic diagram of the ideal single-dopant transistor: (a) Schematic illustration of single-dopant transistor; (b) donor mediates single-electron tunneling from source to drain; (c) transfer characteristics for single-dopant transistor in the low temperature[25].理想单杂质晶体管的基本结构和工作原理图 (a)单杂质晶体管结构示意图; (b)施主原子调制源端到漏端的单电子隧穿; (c)低温下单杂质晶体管的转移特性曲线[25]](/Images/highlights-null.jpg)
Fig. 2. Structure and schematic diagram of the ideal single-dopant transistor: (a) Schematic illustration of single-dopant transistor; (b) donor mediates single-electron tunneling from source to drain; (c) transfer characteristics for single-dopant transistor in the low temperature[25].
理想单杂质晶体管的基本结构和工作原理图 (a)单杂质晶体管结构示意图; (b)施主原子调制源端到漏端的单电子隧穿; (c)低温下单杂质晶体管的转移特性曲线[25]
![(a) Perspective STM image of single-atom transistor; (b) close-up of the inner device area[28].(a)单原子晶体管器件结构 STM 图像; (b)局部放大图[28]](/Images/icon/loading.gif)
Fig. 3. (a) Perspective STM image of single-atom transistor; (b) close-up of the inner device area[28].
(a)单原子晶体管器件结构 STM 图像; (b)局部放大图[28]
![(a) Schematic channel structure; (b) example of simulated potential profile; (c) example of dc Isd -Vg characteristics (Vsd = 5 mV) for a short-channel FET; (d) schematic channel structure; (e) example of simulated potential profile; (f) example of dc Isd -Vg chara-cteristics (Vsd = 5 mV) for a long-channel FET[29].(a)短沟道器件示意图; (b)短沟道器件电势分布图; (c)短沟道器件Isd -Vg特性曲线(Vsd = 5 mV); (d)长沟道器件示意图; (e)长沟道器件电势分布图; (f)长沟道器件Isd -Vg特性曲线(Vsd = 5 mV)[29]](/Images/icon/loading.gif)
Fig. 4. (a) Schematic channel structure; (b) example of simulated potential profile; (c) example of dc I sd -V g characteristics (V sd = 5 mV) for a short-channel FET; (d) schematic channel structure; (e) example of simulated potential profile; (f) example of dc I sd -V g chara-cteristics (V sd = 5 mV) for a long-channel FET[29].
(a)短沟道器件示意图; (b)短沟道器件电势分布图; (c)短沟道器件I sd -V g特性曲线(V sd = 5 mV); (d)长沟道器件示意图; (e)长沟道器件电势分布图; (f)长沟道器件I sd -V g特性曲线(V sd = 5 mV)[29]
![(a) Statistical results of the number of subpeaks; (b) statistical results of the number of dopant-induced QDs; (c) average number of dopants embedded in one QD for 50 nm × 50 nm nanostructures[29].(a)不同沟道长度下分裂峰个数的实验统计; (b)不同沟道长度下量子点个数的模拟统计; (c) 50 nm × 50 nm纳米结构中一个量子点中的平均杂质数目[29]](/Images/icon/loading.gif)
Fig. 5. (a) Statistical results of the number of subpeaks; (b) statistical results of the number of dopant-induced QDs; (c) average number of dopants embedded in one QD for 50 nm × 50 nm nanostructures[29].
(a)不同沟道长度下分裂峰个数的实验统计; (b)不同沟道长度下量子点个数的模拟统计; (c) 50 nm × 50 nm纳米结构中一个量子点中的平均杂质数目[29]
![(a) Sequence of electronic potential landscapes as a function of applied VBG; (b) a simple illustration of one-by-one neutralization of individual P-donors at different VBG[30].(a)低温下随栅压变化的电势分布图; (b)分立的磷施主原子在不同栅压下逐个电中性化[30]](/Images/icon/loading.gif)
Fig. 6. (a) Sequence of electronic potential landscapes as a function of applied V BG; (b) a simple illustration of one-by-one neutralization of individual P-donors at different V BG[30].
(a)低温下随栅压变化的电势分布图; (b)分立的磷施主原子在不同栅压下逐个电中性化[30]
![(a) Low-temperature source-drain current (ID) vs. gate voltage (VG) characteristics; (b) one possible P-donors’ distribution and schematic channel potential profiles[31].(a) SOI-FET低温下的ID-VG特性曲线; (b)沟道中可能的杂质原子分布以及沟道电势分布示意图[31]](/Images/icon/loading.gif)
Fig. 7. (a) Low-temperature source-drain current (I D) vs. gate voltage (V G) characteristics; (b) one possible P-donors’ distribution and schematic channel potential profiles[31].
(a) SOI-FET低温下的I D-V G特性曲线; (b)沟道中可能的杂质原子分布以及沟道电势分布示意图[31]
![Tailed localized states in disordered systems[32].无序系统中的带尾定域态[32]](/Images/icon/loading.gif)
![Schematic representation of the energy and space distribution of the localized states in the case of weak (a) and strong (b) compensation[34].弱杂质补偿和强杂质补偿情况下的能带和定域态空间分布示意图 (a)弱杂质补偿; (b)强杂质补偿[34]](/Images/icon/loading.gif)
Fig. 9. Schematic representation of the energy and space distribution of the localized states in the case of weak (a) and strong (b) compensation[34].
弱杂质补偿和强杂质补偿情况下的能带和定域态空间分布示意图 (a)弱杂质补偿; (b)强杂质补偿[34]
![Hopping modes of the electron: (a) Variable range hopping; (b) nearest neighbor hopping[38].电子的跃迁方式 (a)可变程跃迁; (b)最近邻跃迁[38]](/Images/icon/loading.gif)
Fig. 10. Hopping modes of the electron: (a) Variable range hopping; (b) nearest neighbor hopping[38].
电子的跃迁方式 (a)可变程跃迁; (b)最近邻跃迁[38]
开尔文探针力显微镜测量SOI-FETs的结构示意图; (b), (c)不同掺杂浓度下, 施主原子形成的电势分布图[39]](/Images/icon/loading.gif)
Fig. 11. (a) Schematic of KPFM measurement setup; (b), (c) potential distribution of donor atoms at different doping concentrations[39](a)开尔文探针力显微镜测量SOI-FETs的结构示意图; (b), (c)不同掺杂浓度下, 施主原子形成的电势分布图[39]
![(a) Low-temperature source-drain current (ID) vs gate voltage (VG) characteristics; (b) a possible P-donors’ distribution and schematic channel potential profiles in the selective doping channel[31].(a) SOI-FET低温下的ID-VG特性曲线; (b)选择性掺杂沟道中可能的杂质原子分布以及沟道电势分布示意图[31]](/Images/icon/loading.gif)
Fig. 12. (a) Low-temperature source-drain current (I D) vs gate voltage (V G) characteristics; (b) a possible P-donors’ distribution and schematic channel potential profiles in the selective doping channel[31].
(a) SOI-FET低温下的I D-V G特性曲线; (b)选择性掺杂沟道中可能的杂质原子分布以及沟道电势分布示意图[31]
![Hubbard band model[43].Hubbard能带模型[43]](/Images/icon/loading.gif)
![Anderson-Mott transition probed by means of quantum transport[44].不同杂质数目下的量子输运特征, 从单施主态到杂质带的安德森-莫特转变[44]](/Images/icon/loading.gif)
Fig. 14. Anderson-Mott transition probed by means of quantum transport[44].
不同杂质数目下的量子输运特征, 从单施主态到杂质带的安德森-莫特转变[44]
![(a) An idealized representation of the potential distributions in the 20 phosphorous donors distributed along the channel of the sample; (b) conductance σ of the device probed at 4.4 K measured at Vds = 2.505 mV. Inlet: extraction of the threshold voltage at room temperature, at Vds = 2.505 mV[45].(a)沿沟道分布的20个磷施主原子中电势分布的理想示意图; (b)Vds = 2.505 mV时, 在4.4 K下测量的器件电导-栅压曲线. 插图: Vds = 2.505 mV时, 室温下提取的阈值电压[45]](/Images/icon/loading.gif)
Fig. 15. (a) An idealized representation of the potential distributions in the 20 phosphorous donors distributed along the channel of the sample; (b) conductance σ of the device probed at 4.4 K measured at V ds = 2.505 mV. Inlet: extraction of the threshold voltage at room temperature, at V ds = 2.505 mV[45].
(a)沿沟道分布的20个磷施主原子中电势分布的理想示意图; (b)V ds = 2.505 mV时, 在4.4 K下测量的器件电导-栅压曲线. 插图: V ds = 2.505 mV时, 室温下提取的阈值电压[45]
![(a) The conductance as a function of the gate voltage Vg from 4.2 to 274 K; (b) the thermal activation of the upper Hubbard band at high temperature; (c) the thermal activation of the lower Hubbard band at low temperature; (d) the thermal activation of the upper Hubbard band at low temperature[45].(a)4.2—274 K温度区间下的电导-栅压曲线; (b)高温下上Hubbard带的热激活输运; (c)低温下下Hubbard带的热激活输运; (d)低温下上Hubbard带的热激活输运[45]](/Images/icon/loading.gif)
Fig. 16. (a) The conductance as a function of the gate voltage V g from 4.2 to 274 K; (b) the thermal activation of the upper Hubbard band at high temperature; (c) the thermal activation of the lower Hubbard band at low temperature; (d) the thermal activation of the upper Hubbard band at low temperature[45].
(a)4.2—274 K温度区间下的电导-栅压曲线; (b)高温下上Hubbard带的热激活输运; (c)低温下下Hubbard带的热激活输运; (d)低温下上Hubbard带的热激活输运[45]
![(a) Schematic configuration of the fabricated Si SET; (b) scanning electron microscopy image of the Si nanowire after chemical wet-etching; (c) transmission electron microscopy image of the Si nanowire after fabricating the GAA structure; (d) ID−VG characteristic curves of the fabricated SET at T = 150−300 K[52].(a)单电子晶体管结构示意图; (b)化学湿法腐蚀后硅纳米线扫描电子显微镜(SEM)图; (c)形成围栅GAA结构后硅纳米线透射电子显微镜(TEM)图; (d)制备的单电子晶体管在150−300 K下的ID-VG特性曲线[52]](/Images/icon/loading.gif)
Fig. 17. (a) Schematic configuration of the fabricated Si SET; (b) scanning electron microscopy image of the Si nanowire after chemical wet-etching; (c) transmission electron microscopy image of the Si nanowire after fabricating the GAA structure; (d) I D−V G characteristic curves of the fabricated SET at T = 150−300 K[52].
(a)单电子晶体管结构示意图; (b)化学湿法腐蚀后硅纳米线扫描电子显微镜(SEM)图; (c)形成围栅GAA结构后硅纳米线透射电子显微镜(TEM)图; (d)制备的单电子晶体管在150−300 K下的I D-V G特性曲线[52]
![(a) Schematic of dopant atom transistor; (b) two determined levels provided by impurity in device[19].(a)杂质原子晶体管结构示意图; (b)杂质在器件沟道中提供确定的两个能级[19]](/Images/icon/loading.gif)
Fig. 18. (a) Schematic of dopant atom transistor; (b) two determined levels provided by impurity in device[19].
(a)杂质原子晶体管结构示意图; (b)杂质在器件沟道中提供确定的两个能级[19]
![Ground state of phosphorous donor becomes deeper with decreasing radius of Si nanowire[53].磷原子的基态能级随硅纳米线直径的减小而加深[53]](/Images/icon/loading.gif)
Fig. 19. Ground state of phosphorous donor becomes deeper with decreasing radius of Si nanowire[53].
磷原子的基态能级随硅纳米线直径的减小而加深[53]
![Ionization energy EI vs. the wire radius R for donor impurities: (a) Without dielectric confinement; (b) with dielectric confinement[55].(a)没有和(b)有介电限制时杂质原子的电离能随纳米线半径的变化曲线图[55]](/Images/icon/loading.gif)
Fig. 20. Ionization energy E I vs. the wire radius R for donor impurities: (a) Without dielectric confinement; (b) with dielectric confinement[55].
(a)没有和(b)有介电限制时杂质原子的电离能随纳米线半径的变化曲线图[55]
![(a) Schematic of SOI transistor; (b) TEM image taken across the device channel; (c) SEM images of non-stub channel and (d) stub channel[57].(a) SOI晶体管结构示意图; (b)器件沟道TEM图; (c)原纳米线结构; (d) stub纳米线结构[57]](/Images/icon/loading.gif)
Fig. 21. (a) Schematic of SOI transistor; (b) TEM image taken across the device channel; (c) SEM images of non-stub channel and (d) stub channel[57].
(a) SOI晶体管结构示意图; (b)器件沟道TEM图; (c)原纳米线结构; (d) stub纳米线结构[57]
![Binding energy of clustered donors is shown for different N[53].基态电子的束缚能随耦合原子数目的增加而增大[53]](/Images/icon/loading.gif)
![(a) The selectively-doped Si nanoscale channel; (b) atomistic representation of the potential landscape simulated for a selectively-doped area with deepest potential well[58].(a)选择性掺杂硅纳米沟道; (b)选择性掺杂区域模拟的最深势阱分布[58]](/Images/icon/loading.gif)
Fig. 23. (a) The selectively-doped Si nanoscale channel; (b) atomistic representation of the potential landscape simulated for a selectively-doped area with deepest potential well[58].
(a)选择性掺杂硅纳米沟道; (b)选择性掺杂区域模拟的最深势阱分布[58]
![(a) and (b) IDS-VG characteristics as a function of temperature for a selectively-doped-channel SOI-FET (up to 300 K) and for a non-doped-channel SOI-FET (up to 160 K)[58].(a)沟道选择性掺杂和(b)沟道未掺杂SOI-FET在不同温度下的ID-VG特性曲线[58]](/Images/icon/loading.gif)
Fig. 24. (a) and (b) IDS-VG characteristics as a function of temperature for a selectively-doped-channel SOI-FET (up to 300 K) and for a non-doped-channel SOI-FET (up to 160 K)[58].
(a)沟道选择性掺杂和(b)沟道未掺杂SOI-FET在不同温度下的I D-V G特性曲线[58]
![(a) IDS-VG characteristics as a function of temperature for the selectively-doped channel SOI-FET; (b) effective barrier height (EBeff) estimated from Arrhenius plots as a function of VG; (c) arrhenius plots for VG corresponding to different peaks; (d) schematic illustrations of the mechanism of Coulomb blockade of activated conduction for the single-electron tunneling current peak (lower panel) and for the Coulomb blockade condition with an electron trapped in the QD (upper panel); (e) EBeff extracted for a non-doped-channel SOI-FET, exhibiting only behavior typical of thermally-activated conduction[58].(a)不同温度下, 沟道选择性掺杂SOI-FET器件IDS-VG特性曲线; (b)有效势垒高度随栅压VG的变化; (c)不同电流峰对应的Arrhenius曲线; (d)激活传导的库仑阻塞机制(下图), 量子点俘获电子的库仑阻塞情形(上图); (e)沟道未掺杂SOI-FET器件仅仅表现出热激活传导性质[58]](/Images/icon/loading.gif)
Fig. 25. (a) I DS-V G characteristics as a function of temperature for the selectively-doped channel SOI-FET; (b) effective barrier height (E Beff) estimated from Arrhenius plots as a function of V G; (c) arrhenius plots for V G corresponding to different peaks; (d) schematic illustrations of the mechanism of Coulomb blockade of activated conduction for the single-electron tunneling current peak (lower panel) and for the Coulomb blockade condition with an electron trapped in the QD (upper panel); (e) E Beff extracted for a non-doped-channel SOI-FET, exhibiting only behavior typical of thermally-activated conduction[58].
(a)不同温度下, 沟道选择性掺杂SOI-FET器件I DS-V G特性曲线; (b)有效势垒高度随栅压V G的变化; (c)不同电流峰对应的Arrhenius曲线; (d)激活传导的库仑阻塞机制(下图), 量子点俘获电子的库仑阻塞情形(上图); (e)沟道未掺杂SOI-FET器件仅仅表现出热激活传导性质[58]
![(a) Schematic of the point contact QD transistor; (b) schematic representation of the energy diagram across the point-contact region[62].(a)点接触式量子点晶体管结构示意图; (b)点接触区域的能带示意图[62]](/Images/icon/loading.gif)
Set citation alerts for the article
Please enter your email address