• Acta Optica Sinica (Online)
  • Vol. 1, Issue 6, 0602002 (2024)
Zhiping Zhou1,2,3,*, Weibiao Chen2, Junbo Feng4, Fenghe Yang5..., Deyue Ma2, Xiwen He2, Dezhao Li1, Huihuang Hou1, Youqiang Shuai1 and Weilong Cui1|Show fewer author(s)
Author Affiliations
  • 1Hangzhou Aijie Optoelectronic Technology Co., Ltd., Hangzhou 311400, Zhejiang , China
  • 2Aerospace Laser Technology and Systems Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3State Key Laboratory of Advanced Optical Communications Systems and Networks, School of Electronics, Peking University, Beijing 100871, China
  • 4Chongqing United Microelectronics Center Co., Ltd., Chongqing 400030, China
  • 5Zhangjiang Laboratory, Shanghai 201210, China
  • show less
    DOI: 10.3788/AOSOL240458 Cite this Article Set citation alerts
    Zhiping Zhou, Weibiao Chen, Junbo Feng, Fenghe Yang, Deyue Ma, Xiwen He, Dezhao Li, Huihuang Hou, Youqiang Shuai, Weilong Cui. Silicon Based Optoelectronics and Its Frontier Advances (Invited)[J]. Acta Optica Sinica (Online), 2024, 1(6): 0602002 Copy Citation Text show less
    References

    [1] Zhou Z P[M]. Silicon photonics, 30-50(2021).

    [2] Hwang T. Computational power and the social impact of artificial intelligence[EB/OL]. https://arxiv.org/abs/1803.08971v1

    [3] Shaw J, Rudzicz F, Jamieson T et al. Artificial intelligence and the implementation challenge[J]. Journal of Medical Internet Research, 21, e13659(2019).

    [4] Kaplan J, McCandlish S, Henighan T et al. Scaling laws for neural language models[EB/OL]. https://arxiv.org/abs/2001.08361v1

    [5] Wei J, Tay Y, Bommasani R et al. Emergent abilities of large language models[EB/OL]. https://arxiv.org/abs/2206.07682v2

    [6] Huh M, Cheung B, Wang T Z et al. The platonic representation hypothesis[EB/OL]. https://arxiv.org/abs/2405.07987v5

    [7] Hu Y, Lin X H, Wang H Z et al. Wafer-scale computing: advancements, challenges, and future perspectives[feature[J]. IEEE Circuits and Systems Magazine, 24, 52-81(2024).

    [8] Xiang C, Jin W, Terra O et al. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics[J]. Nature, 620, 78-85(2023).

    [9] Kurczveil G, Xiao X, Descos A et al. High-temperature error-free operation in a heterogeneous silicon quantum dot comb laser[C](2022).

    [10] Margalit N, Xiang C, Bowers S M et al. Perspective on the future of silicon photonics and electronics[J]. Applied Physics Letters, 118, 220501(2021).

    [11] Theis T N, Wong H S P. The end of Moore’s law: a new beginning for information technology[J]. Computing in Science & Engineering, 19, 41-50(2017).

    [12] Lauterbach G. The path to successful wafer-scale integration: the cerebras story[J]. IEEE Micro, 41, 52-57(2021).

    [13] Liu H, Lam C F, Johnson C. Scaling optical interconnects in datacenter networks opportunities and challenges for WDM[C], 113-116(2010).

    [14] Dai D X, Wang J, Shi Y C. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light[J]. Optics Letters, 38, 1422-1424(2013).

    [15] Xu H N, Liu C Y, Dai D X et al. Direct-access mode-division multiplexing switch for scalable on-chip multi-mode networks[J]. Nanophotonics, 10, 4551-4566(2021).

    [16] Atabaki A H, Moazeni S, Pavanello F et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip[J]. Nature, 556, 349-354(2018).

    [17] Shi Y C, Zhang Y, Wan Y T et al. Silicon photonics for high-capacity data communications[J]. Photonics Research, 10, A106-A134(2022).

    [18] Zhou Z P, Yang F H, Chen R X et al. Silicon photonics: a converging point of microelectronics and optoelectronics[J]. Micro/Nano Electronics and Intelligent Manufacturing, 1, 4-15(2019).

    [19] Zhou Z P‍. Silicon photonics: a converging point of optoelectronics and microelectronics[R](2014).

    [20] Intel. Intel demonstrates first fully integrated optical I/O chiplet[EB/OL]. https://www.intel.com/content/www/us/en/newsroom/news/intel-unveils-first-integrated-optical-io-chiplet.html

    [22] Labs Ayar. Demonstration of Ayar Labs’ optical I/O multi-chip package and single-die package solutions[EB/OL]. https://ayarlabs.com/resources/demonstration-of-ayar-labs-optical-i-o-multi-chip-package-and-single-die-package-solutions/

    [23] Zhang X S, Kwon K, Henriksson J et al. A large-scale microelectromechanical-systems-based silicon photonics LiDAR[J]. Nature, 603, 253-258(2022).

    [24] Zhu J G, Yuan Y, Jiang C H et al. Research progress of on-chip integrated FMCW LiDAR (cover paper·invited)[J]. Infrared and Laser Engineering, 53, 20240239(2024).

    [25] Zhou Z P, Xu P F, Dong X W. Computing on silicon photonic platform[J]. Chinese Journal of Lasers, 47, 0600001(2020).

    [26] Demkov A A, Bajaj C, Ekerdt J G et al. Materials for emergent silicon-integrated optical computing[J]. Journal of Applied Physics, 130, 070907(2021).

    [27] Wu J M, Lin X, Guo Y C et al. Analog optical computing for artificial intelligence[J]. Engineering, 10, 133-145(2022).

    [28] Xiao Z A, Liu W X, Xu S Y et al. Recent progress in silicon-based photonic integrated circuits and emerging applications[J]. Advanced Optical Materials, 11, 2301028(2023).

    [29] Bueno J, Maktoobi S, Froehly L et al. Reinforcement learning in a large-scale photonic recurrent neural network[J]. Optica, 5, 756-760(2018).

    [30] Zhou Z P. Silicon based optoelectronic chips: the core technology for lane changing and overtaking in the post Moore era[EB/OL]. https://opticsjournal.net/CL/Online.html?posttype=view&postid=PT200628000014kQnTp

    [31] Zhou Z P. Silicon based optoelectronic chips: the core technology for lane changing and overtaking[EB/OL]. https://mp.weixin.qq.com/s/XbJ4KhJ3725flzFxEO911g

    [32] Henderson G N, Gaylord T K, Glytsis E N. Ballistic electron transport in semiconductor heterostructures and its analogies in electromagnetic propagation in general dielectrics[J]. Proceedings of the IEEE, 79, 1643-1659(1991).

    [33] Gaylord T K, Henderson G N, Glytsis E N. Application of electromagnetics formalism to quantum-mechanical electron-wave propagation in semiconductors[J]. Journal of the Optical Society of America B, 10, 333-339(1993).

    [34] Winzer P J. Making spatial multiplexing a reality[J]. Nature Photonics, 8, 345-348(2014).

    [35] Soref R, Bennett B. Electrooptical effects in silicon[J]. IEEE Journal of Quantum Electronics, 23, 123-129(1987).

    [36] Zhou Z P, Yang F H, Chen R X et al. Silicon photonics: a converging point of microelectronics and optoelectronics[J]. Micro/Nano Electronics and Intelligent Manufacturing, 1, 4-15(2019).

    [37] Zhou Z P[M]. Silicon photonics, 30-50(2012).

    [39] Zhou Z P. Why do we experience ‘core’ pain?[EB/OL]. https://zhuanlan.zhihu.com/p/342285555

    [40] Papatryfonos K, Selviah D R, Maman A et al. Co-package technology platform for low-power and low-cost data centers[J]. Applied Sciences, 11, 6098(2021).

    [41] Zhou Z P, Chen R X, Li X B et al. Development trends in silicon photonics for data centers[J]. Optical Fiber Technology, 44, 13-23(2018).

    [42] Mulcahy J, Peters F H, Dai X. Modulators in silicon photonics:heterogenous integration & and beyond[J]. Photonics, 9, 40(2022).

    [43] Sun J L, Lin J J, Zhou M et al. High-power, electrically-driven continuous-wave 1.55-‍μm Si-based multi-quantum well lasers with a wide operating temperature range grown on wafer-scale InP-on-Si (100) heterogeneous substrate[J]. Light: Science & Applications, 13, 71(2024).

    [44] Sun C, Georgas M, Orcutt J et al. A monolithically-integrated chip-to-chip optical link in bulk CMOS[J]. IEEE Journal of Solid-State Circuits, 50, 828-844(2015).

    [45] Li A, Ma Q L, Xie Y J et al. A 256 Gb/s electronic–photonic monolithically integrated transceiver in 45 nm CMOS[J]. Journal of Semiconductors, 45, 070501(2024).

    [46] He X W, Ma D Y, Zhou C et al. On-chip integrated few-mode erbium-ytterbium co-doped waveguide amplifiers[J]. Photonics Research, 12, 1067-1077(2024).

    [47] Sun T Y, Shui F R, Ning T H et al. Tunable antireflection properties with self-assembled nanopillar and nanohole structure[J]. Nanomaterials, 12, 4466(2022).

    [48] Sun T Y, Song W K, Qin Z B et al. Tunable plasmonic perfect absorber for hot electron photodetection in gold-coated silicon nanopillars[J]. Photonics, 10, 60(2023).

    [49] Shuai Y Q, Zhou Z P, Su H. Toward practical optical phased arrays through grating antenna engineering[J]. Photonics, 10, 520(2023).

    [50] Gao D S, Zhou Z P. Silicon-based optoelectronics: progress towards large scale optoelectronic integration and applications[J]. Frontiers of Optoelectronics, 15, 27(2022).

    [51] Zhou Z P, Chen W B, He X W et al. Photonics in a time of rapid growth: silicon based optoelectronics in China[J]. IEEE Photonics Journal, 16, 0600109(2024).

    [52] Zhang L, Hong S H, Wang Y et al. Ultralow-loss silicon photonics beyond the singlemode regime[J]. Laser & Photonics Reviews, 16, 2100292(2022).

    [53] Jahani S, Kim S, Atkinson J et al. Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration[J]. Nature Communications, 9, 1893(2018).

    [54] Ji X C, Okawachi Y, Gil-Molina A et al. Ultra-low-loss silicon nitride photonics based on deposited films compatible with foundries[J]. Laser & Photonics Reviews, 17, 2200544(2023).

    [55] Moss D J, Morandotti R, Gaeta A L et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics[J]. Nature Photonics, 7, 597-607(2013).

    [56] Dong P. Silicon photonic integrated circuits for wavelength-division multiplexing applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 6100609(2016).

    [57] Dai D X. Silicon mode-‍(de)multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light[C], ATh3B.3(2012).

    [58] Papadovasilakis M, Chandran S, Gebregiorgis Y et al. Fabrication-tolerant O-band WDM filter with phase-balanced tapered arms and wavelength-independent couplers[J]. Journal of Lightwave Technology, 42, 258-267(2024).

    [59] He Y, Li X F, Zhang Y et al. On-chip metamaterial-enabled high-order mode-division multiplexing[J]. Advanced Photonics, 5, 056008(2023).

    [60] Peng Y Y, Zhao W K, Shi Y C et al. 192-channel silicon reconfigurable optical add-drop multiplexer[C](2024).

    [61] Ma D Y, He X W, Zhou C et al. 16-channel hybrid WDM-PDM-MDM (de) multiplexer for multi-band large-capacity optical transmission system based on thick Si3N4 platform[J]. IEEE Photonics Journal, 16, 2201008(2024).

    [62] Yang C J, Liang L, Qin L et al. Advances in silicon-based, integrated tunable semiconductor lasers[J]. Nanophotonics, 12, 197-217(2023).

    [63] Ramirez J M, Souleiman A, Fanneau P et al. Integrated lasers on silicon for optical communications[J]. Proceedings of SPIE, 12334, 1233409(2023).

    [64] Wei W Q, He A, Yang B et al. Monolithic integration of embedded Ⅲ‍-‍Ⅴ lasers on SOI[J]. Light: Science & Applications, 12, 84(2023).

    [65] Sobu Y, Huang G X, Tanaka S et al. High-speed optical digital-to-analog converter operation of compact two-segment all-silicon Mach‍‒‍Zehnder modulator[J]. Journal of Lightwave Technology, 39, 1148-1154(2021).

    [66] Yuan Y, Sorin W V, Huang Z H et al. A 100 Gb/s PAM4 two-segment silicon microring resonator modulator using a standard foundry process[J]. ACS Photonics, 9, 1165-1171(2022).

    [67] Gevorgyan H, Khilo A, Wade M T et al. Miniature, highly sensitive MOSCAP ring modulators in co-optimized electronic-photonic CMOS[J]. Photonics Research, 10, A1-A7(2021).

    [68] Han C H, Zheng Z, Shu H W et al. Slow-light silicon modulator with 110-GHz bandwidth[J]. Science Advances, 9, eadi5339(2023).

    [69] Xu M Y, Zhu Y T, Pittalà F et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission[J]. Optica, 9, 61-62(2022).

    [70] Harwood M G, Popper P, Rushman D F. Curie point of Barium titanate[J]. Nature, 159, 58-59(1947).

    [71] Guo W, Posadas A B, Demkov A A. Epitaxial integration of BaTiO3 on Si for electro-optic applications[J]. Journal of Vacuum Science & Technology A, 39, 030804(2021).

    [72] Yan T W, Li L, Zhang Y F et al. High-performance Ge photodetectors on silicon photonics platform for optical interconnect[J]. Sensors and Actuators A, 376, 115535(2024).

    [73] Shi Y, Zhou D, Yu Y et al. 80  GHz germanium waveguide photodiode enabled by parasitic parameter engineering[J]. Photonics Research, 9, 605-609(2021).

    [74] Shi Y, Li X, Chen G Y et al. Avalanche photodiode with ultrahigh gain‍‒‍bandwidth product of 1033 GHz[J]. Nature Photonics, 18, 610-616(2024).

    [75] Sun C, Jeong D, Zhang M et al. TeraPHY: an O-band WDM electro-optic platform for low power, terabit/s optical I/O[C](2020).

    [76] Zhou Z P, Tu Z J, Li T T et al. Silicon photonics for advanced optical interconnections[J]. Journal of Lightwave Technology, 33, 928-933(2015).

    [77] Tsuda H. Silicon photonics platforms for optical communication systems, outlook on future developments[J]. IEICE Electronics Express, 17, 20202002(2020).

    [78] Yamanaka S. Recent advances in integrated silicon photonics engine for coherent optical communications[J]. Proceedings of SPIE, 11713, 117130J(2021).

    [79] Barkai A, Chetrit Y, Cohen O et al. Integrated silicon photonics for optical networks[J]. Journal of Optical Networking, 6, 25-47(2007).

    [80] Krishnamoorthy A V, Schwetman H, Zheng X et al. Energy-efficient photonics in future high-connectivity computing systems[J]. Journal of Lightwave Technology, 33, 889-900(2015).

    [81] Yang P, Nakamura S, Yashiki K et al. Inter/intra-chip optical interconnection network: opportunities, challenges, and implementations[C](2016).

    [82] Wang J. Chip-scale optical interconnects and optical data processing using silicon photonic devices[J]. Photonic Network Communications, 31, 353-372(2016).

    [83] Fathololoumi S, Hui D, Jadhav S et al. Silicon photonic integrated circuit for co-packaging with switch ASIC[J]. Proceedings of SPIE, 11619, 116190A(2021).

    [84] Okawachi Y, Kim B Y, Lipson M et al. Chip-scale frequency combs for data communications in computing systems[J]. Optica, 10, 977-995(2023).

    [85] Moss B R, Poulton C V, Byrd M J et al. A 2048-channel, 125 μW/ch DAC controlling a 9, 216-element optical phased array coherent solid-state LiDAR[C](2023).

    [86] Lu L J, Xu W H, Guo Y Y et al. Large-scale optical phased array based on a multi-layer silicon-nitride-on-silicon photonic platform[C](2024).

    [87] Sajan S C, Singh A, Sharma P K et al. Silicon photonics biosensors for cancer cells detection: a review[J]. IEEE Sensors Journal, 23, 3366-3377(2023).

    [88] Peng C, Yang C J, Zhao H et al. Optical waveguide refractive index sensor for biochemical sensing[J]. Applied Sciences, 13, 3829(2023).

    [89] Moretta R, De Stefano L, Terracciano M et al. Porous silicon optical devices: recent advances in biosensing applications[J]. Sensors, 21, 1336(2021).

    [90] de Cea M, Atabaki A H, Ram R J. Energy harvesting optical modulators with sub-attojoule per bit electrical energy consumption[J]. Nature Communications, 12, 2326(2021).

    [91] Xu P F, Zhou Z P. Silicon-based optoelectronics for general-purpose matrix computation: a review[J]. Advanced Photonics, 4, 044001(2022).

    [92] Hou H H, Xu P F, Zhou Z P et al. Hardware error correction for MZI-based matrix computation[J]. Micromachines, 14, 955(2023).

    [93] Shen Y C, Harris N C, Skirlo S et al. Deep learning with coherent nanophotonic circuits[J]. Nature Photonics, 11, 441-446(2017).

    [94] Tait A N, de Lima T F, Zhou E et al. Neuromorphic photonic networks using silicon photonic weight banks[J]. Scientific Reports, 7, 7430(2017).

    [95] Zhou H L, Dong J J, Cheng J W et al. Photonic matrix multiplication lights up photonic accelerator and beyond[J]. Light: Science & Applications, 11, 30(2022).

    [96] Dong B W, Aggarwal S, Zhou W et al. Higher-dimensional processing using a photonic tensor core with continuous-time data[J]. Nature Photonics, 17, 1080-1088(2023).

    [97] Xu Z H, Zhou T K, Ma M Z et al. Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial general intelligence[J]. Science, 384, 202-209(2024).

    Zhiping Zhou, Weibiao Chen, Junbo Feng, Fenghe Yang, Deyue Ma, Xiwen He, Dezhao Li, Huihuang Hou, Youqiang Shuai, Weilong Cui. Silicon Based Optoelectronics and Its Frontier Advances (Invited)[J]. Acta Optica Sinica (Online), 2024, 1(6): 0602002
    Download Citation