• International Journal of Extreme Manufacturing
  • Vol. 5, Issue 4, 45501 (2023)
1,2, 1, 1, 1..., 2, 2, 2, 2, 2, 3, 1 and 1,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Fine Chemicals & Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
  • 2Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, People’s Republic of China
  • 3Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/acef78 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Photothermal superhydrophobic copper nanowire assemblies: fabrication and deicing/defrosting applications[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 45501 Copy Citation Text show less
    References

    [1] Mahvi A J, Boyina K, Musser A, Elbel S and Miljkovic N 2021 Superhydrophobic heat exchangers delay frost formation and enhance efficiency of electric vehicle heat pumps Int. J. Heat Mass Transfer 172 121162

    [2] Boyina K S, Mahvi A J, Chavan S, Park D, Kumar K, Lira M, Yu Y X, Gunay A A, Wang X F and Miljkovic N 2019 Condensation frosting on meter-scale superhydrophobic and superhydrophilic heat exchangers Int. J. Heat Mass Transfer 145 118694

    [3] YangSY, Wu CY, ZhaoGL,SunJ,Yao X,MaXH and Wang Z K 2021 Condensation frosting and passive anti-frosting Cell Rep. Phys. Sci. 2 100474

    [4] WangT, ZhengYH,RajiARO,LiYL,Sikkema WKAand Tour J M 2016 Passive anti-icing and active deicing films ACS Appl. Mater. Interfaces 8 14169–73

    [5] Ramakrishna D M and Viraraghavan T 2005 Environmental impact of chemical deicers–a review Water Air Soil Pollut. 166 49–63

    [6] Parent O and Ilinca A 2011 Anti-icing and de-icing techniques for wind turbines: critical review Cold Reg. Sci. Technol. 65 88–96

    [7] Dhyani A, Choi W, Golovin K and Tuteja A 2022 Surface design strategies for mitigating ice and snow accretion Matter 5 1423–54

    [8] Xu Q, Li J, Tian J, Zhu J and Gao X F 2014 Energy-effective frost-free coatings based on superhydrophobic aligned nanocones ACS Appl. Mater. Interfaces 6 8976–80

    [9] Liu J, Zhu C Q, Liu K, Jiang Y L, Song Y, Francisco J S, Zeng X C and Wang J J 2017 Distinct ice patterns on solid surfaces with various wettabilities Proc. Natl Acad. Sci. USA 114 11285–90

    [10] Kim P, Wong T S, Alvarenga J, Kreder M J, Adorno-Martinez W E and Aizenberg J 2012 Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance ACS Nano 6 6569–77

    [11] Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A and Aizenberg J 2011 Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity Nature 477 443–7

    [12] Leng X, Sun L C, Long Y J and Lu Y 2022 Bioinspired superwetting materials for water manipulation Droplet 1 139–69

    [13] Chatterjee R, Beysens D and Anand S 2019 Delaying ice and frost formation using phase-switching liquids Adv. Mater. 31 1807812

    [14] Irajizad P, Hasnain M, Farokhnia N, Sajadi S M and Ghasemi H 2016 Magnetic slippery extreme icephobic surfaces Nat. Commun. 7 13395

    [15] Azimi Dijvejin Z, Jain M C, Kozak R, Zarifi M H and Golovin K 2022 Smart low interfacial toughness coatings for on-demand de-icing without melting Nat. Commun. 13 5119

    [16] Golovin K, Dhyani A, Thouless M D and Tuteja A 2019 Low-interfacial toughness materials for effective large-scale deicing Science 364 371–5

    [17] DuBG,ChengYQ,YangSY, XuW, LanZ,Wen RFand Ma X H 2021 Preferential vapor nucleation on hierarchical tapered nanowire bunches Langmuir 37 774–84

    [18] Wen RF, LiQ,Wu JF, Wu GS,WangW, ChenYF, MaXH, Zhao D L and Yang R G 2017 Hydrophobic copper nanowires for enhancing condensation heat transfer Nano Energy 33 177–83

    [19] Wen RF, XuSS,ZhaoDL,LeeYC,MaXHandYangRG 2017 Hierarchical superhydrophobic surfaces with micropatterned nanowire arrays for high-efficiency jumping droplet condensation ACS Appl. Mater. Interfaces 9 44911–21

    [20] Wen R F, Ying Y S, Ma X H and Yang R G 2022 Sustainable anti-frosting surface for efficient thermal transport Cell Rep. Phys. Sci. 3 100937

    [21] Chu F Q, Wen D S and Wu X M 2018 Frost self-removal mechanism during defrosting on vertical superhydrophobic surfaces: peeling off or jumping off Langmuir 34 14562–9

    [22] Liang X C, Kumar V, Ahmadi F and Zhu Y Y 2022 Manipulation of droplets and bubbles for thermal applications Droplet 1 80–91

    [23] YangSY, YingYS,LiWB,FengYW, Wen RF, LiQX, Liu Y B, Du B G, Wang Z K and Ma X H 2023 Efficient anti-frosting on discrete nanoclusters via spatiotemporal control of condensation frosting dynamics Chem. Eng. J. 465 142991

    [24] Lee W, Ji R, G.sele U and Nielsch K 2006 Fast fabrication of long-range ordered porous alumina membranes by hard anodization Nat. Mater. 5 741–7

    [25] Kaneko S, Urata C, Sato T, H.nes R and Hozumi A 2019 Smooth and transparent films showing paradoxical surface properties: the lower the static contact angle, the better the water sliding performance Langmuir 35 6822–9

    [26] Wang F, Liang C H, Yang M T, Fan C and Zhang X S 2015 Effects of surface characteristic on frosting and defrosting behaviors of fin-tube heat exchangers Appl. Therm. Eng. 75 1126–32

    [27] ShuCS,SuQT, LiMH,WangZB,YinSHandHuangS 2022 Fabrication of extreme wettability surface for controllable droplet manipulation over a wide temperature range Int. J. Extrem. Manuf. 4 045103

    [28] YangSY, LiWB,SongYJ,YingYS,Wen RF, DuBG, Jin Y K, Wang Z K and Ma X H 2021 Hydrophilic slippery surface promotes efficient defrosting Langmuir 37 11931–8

    [29] Gurumukhi Y et al 2020 Dynamic defrosting on superhydrophobic and biphilic surfaces Matter 3 1178–95

    [30] Mitridis E, Schutzius T M, Sicher A, Hail C U, Eghlidi H and Poulikakos D 2018 Metasurfaces leveraging solar energy for icephobicity ACS Nano 12 7009–17

    [31] Wu CY, GengHY, Tan SC,LvJY, WangHQ,HeZYand Wang J J 2020 Highly efficient solar anti-icing/deicing via a hierarchical structured surface Mater. Horiz. 7 2097–104

    [32] Xie Z T, Wang H, Li M, Tian Y, Deng Q Y, Chen R, Zhu X and Liao Q 2022 Photothermal trap with multi-scale micro-nano hierarchical structure enhances light absorption and promote photothermal anti-icing/deicing Chem. Eng. J. 435 135025

    [33] Wu SW, DuYJ,AlsaidY, Wu D,HuaMT, Yan YC, Yao B W, Ma Y F, ZhuXYandHe XM 2020 Superhydrophobic photothermal icephobic surfaces based on candle soot Proc. Natl Acad. Sci. USA 117 11240–6

    [34] Zhang H Q et al 2021 Solar anti-icing surface with enhanced condensate self-removing at extreme environmental conditions Proc. Natl Acad. Sci. USA 118 e2100978118

    [35] YinXY, ZhangY, WangDA,LiuZL,LiuYP, PeiXW, Yu B and Zhou F 2015 Integration of self-lubrication and near-infrared photothermogenesis for excellent anti-icing/deicing performance Adv. Funct. Mater. 25 4237–45

    [36] Dash S, De Ruiter J and Varanasi K K 2018 Photothermal trap utilizing solar illumination for ice mitigation Sci. Adv. 4 eaat0127

    [37] Liu L, Xiong W, Lu Y, Huang X, Liu H, Fan L S, Jiang L, Silvain J F and Lu Y F 2019 Precise assembly and joining of silver nanowires in three dimensions for highly conductive composite structures Int. J. Extrem. Manuf. 1 025001

    [38] Li Y B, Zheng M J and Ma L 2007 High-speed growth and photoluminescence of porous anodic alumina films with controllable interpore distances over a large range Appl. Phys. Lett. 91 073109

    [39] Pokroy B, Kang S H, Mahadevan L and Aizenberg J 2009 Self-organization of a mesoscale bristle into ordered, hierarchical helical assemblies Science 323 237–40

    [40] Bico J, Roman B, Moulin L and Boudaoud A 2004 Elastocapillary coalescence in wet hair Nature 432 690

    [41] Eisner T and Aneshansley D J 2000 Defense by foot adhesion in a beetle (Hemisphaerota cyanea) Proc. Natl Acad. Sci. USA 97 6568–73

    [42] Betz O and K.lsch G 2004 The role of adhesion in prey capture and predator defence in arthropods Arthropod Struct. Dev. 33 3–30

    [43] Nicolson M 1949. The interaction between floating particles Mathematical Proc. Cambridge Philosophical Society ed B J Green (Cambridge University Press) pp 288–95

    [44] Neukirch S and Van Der Heijden G H M 2002 Geometry and mechanics of uniform n-plies: from engineering ropes to biological filaments J. Elast. 69 41–72

    [45] Mandal J, Fu Y K, Overvig A C, Jia M X, Sun K R, Shi N N, Zhou H, Xiao X H, Yu N F and Yang Y 2018 Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling Science 362 315–9

    [46] WangT, Wu Y, ShiL,HuXH,ChenMandWu LM2021A structural polymer for highly efficient all-day passive radiative cooling Nat. Commun. 12 365

    [47] Wang D H et al 2020 Design of robust superhydrophobic surfaces Nature 582 55–59

    [48] Quéré D 2008 Wetting and roughness Annu. Rev. Mater. Res. 38 71–99

    [49] Kwak K and Kim C 2005 Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol Korea Aust. Rheol. J. 17 35–40

    [50] Enright R, Miljkovic N, Dou N, Nam Y and Wang E N 2013 Condensation on superhydrophobic copper oxide nanostructures J. Heat Transfer 135 091304

    [51] Jung S, Tiwari M K and Poulikakos D 2012 Frost halos from supercooled water droplets Proc. Natl Acad. Sci. USA 109 16073–8

    [52] Wen RF, XuSS,MaXH,LeeYCandYangRG2018 Three-dimensional superhydrophobic nanowire networks for enhancing condensation heat transfer Joule 2 269–79

    [53] Boreyko J B, Srijanto B R, Nguyen T D, Vega C, Fuentes-Cabrera M and Collier C P 2013 Dynamic defrosting on nanostructured superhydrophobic surfaces Langmuir 29 9516–24

    [54] Wu X M, Chu F Q, Ma Q and Zhu B 2017 Frost formation and frost meltwater drainage characteristics on aluminum surfaces with grooved structures Appl. Therm. Eng. 118 448–54

    [55] HeuCS,KimSW, KimJ,LeeS,KimJM,LeeKS and Kim D R 2018 Frosting and defrosting behavior of slippery surfaces and utilization of mechanical vibration to enhance defrosting performance Int. J. Heat Mass Transfer 125 858–65

    [56] ShenYZ,JinMM,Wu XH,Tao J,LuoXY, ChenHF, LuY and Xie Y H 2019 Understanding the frosting and defrosting mechanism on the superhydrophobic surfaces with hierarchical structures for enhancing anti-frosting performance Appl. Therm. Eng. 156 111–8

    [57] Wang B Q et al 2022 Ultraflexible photothermal superhydrophobic coating with multifunctional applications based on plasmonic tin nanoparticles Adv. Opt. Mater. 10 2200168

    [58] Zhang L, Gao C L, Zhong L S, Zhu L M, Chen H, Hou Y P and Zheng Y M 2022 Robust photothermal superhydrophobic coatings with dual-size micro/nano structure enhance anti-/de-icing and chemical resistance properties Chem. Eng. J. 446 137461

    [59] ZhouLP, LiuAW, ZhouLZ,LiYR,KangJ,TangJ, Han Y N and Liu H T 2022 Facilely fabricated self-lubricated photothermal coating with long-term durability and external-replenishing property for anti-icing/deicing ACS Appl. Mater. Interfaces 14 8537–48

    [60] Schmiesing N C and Sommers A D 2017 Defrosting performance on hydrophilic, hydrophobic, and micro-patterned gradient heat transfer surfaces Sci. Technol. Built Environ. 23 946–59

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Photothermal superhydrophobic copper nanowire assemblies: fabrication and deicing/defrosting applications[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 45501
    Download Citation