• Optoelectronics Letters
  • Vol. 21, Issue 3, 129 (2025)
Ming ZENG, Feng ZHAO, and Xianghui WANG
DOI: 10.1007/s11801-025-4059-z Cite this Article
ZENG Ming, ZHAO Feng, WANG Xianghui. Optimization of transverse unidirectional scattering by morphology modification of irregular V-shaped silicon nanoantennas[J]. Optoelectronics Letters, 2025, 21(3): 129 Copy Citation Text show less
References

[1] LI N, LAI Y, LAM S H, et al. Directional control of light with nanoantennas[J]. Advanced optical materials, 2021, 9(1): 2001081.

[2] ZHU F, SANZ-PAZ M, FERNANDEZ-DOMINGUEZ A I, et al. Optical ultracompact directional antennas based on a dimer nanorod structure[J]. Nanomaterials, 2022, 12(16): 2841.

[3] AI B, SUN Y, ZHAO Y. Plasmonic hydrogen sensors[J]. Small, 2022, 18(25): 2107882.

[4] BAG A, NEUGEBAUER M, MICK U, et al. Towards fully integrated photonic displacement sensors[J]. Nature communications, 2020, 11(1): 2915.

[5] WERSALL M, VERRE R, SVEDENDAHL M, et al. Directional nanoplasmonic antennas for self-referenced refractometric molecular analysis[J]. The journal of physical chemistry C, 2014, 118(36): 21075-21080.

[6] LI Y, BI X, YOU Q, et al. Strong coupling with directional scattering features of metal nanoshells with monolayer WS2 heterostructures[J]. Applied physics letters, 2022, 121(2).

[7] ZHANG T, LI X, XU J, et al. Subwavelength silicon nanoblocks for directional emission manipulation[J]. Nanomaterials, 2020, 10(6): 1242.

[8] BATELBEK H, ABADULA R, LI P, et al. Efficient directional forward scattering by a single Cu@Si core-shell nanoparticle in visible regions[J]. Optical materials, 2024, 148: 114895.

[9] LV J, REN Y, WANG D, et al. Multi-wavelength unidirectional forward scattering properties of the arrow-shaped gallium phosphide nanoantenna[J]. JOSA A, 2023, 40(11): 2034-2044.

[10] ALBELLA P, SHIBANUMA T, MAIER S A. Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers[J]. Scientific reports, 2015, 5(1): 18322.

[11] MATSUMORI A, SUGIMOTO H, FUJII M. Unidirectional transverse light scattering in notched silicon nanosphere[J]. Laser & photonics reviews, 2023, 17(8): 2300314.

[12] MENG Y, CHEN Y, LU L, et al. Optical meta-waveguides for integrated photonics and beyond[J]. Light: science & applications, 2021, 10(1): 1-44.

[13] BAG A, NEUGEBAUER M, WOZNIAK P, et al. Transverse kerker scattering for angstrom localization of nanoparticles[J]. Physical review letters, 2018, 121(19): 193902.

[14] ZHANG Z, XIANG Y, XU W, et al. Broadband transverse unidirectional scattering and large range nanoscale displacement measuring based on the interaction between a tightly focused azimuthally polarized beam and a silicon hollow nanostructure[J]. Optics express, 2023, 31(10): 15372-15383.

[15] LI C, OUAYNG X, SUN J, et al. Transverse scattering from nanodimers tunable with generalized cylindrical vector beams[J]. Laser & photonics reviews, 2023, 17(6): 2200867.

[16] YU Y, LIU J, YU Y, et al. Broadband unidirectional transverse light scattering in a V-shaped silicon nanoantenna[J]. Optics express, 2022, 30(5): 7918-7927.

[17] AN S, ZHENG B, SHALAGINOV M Y, et al. Deep learning modeling approach for metasurfaces with high degrees of freedom[J]. Optics express, 2020, 28(21): 31932-31942.

[18] PARK J, KIM S, NAM D W, et al. Free-form optimization of nanophotonic devices: from classical methods to deep learning[J]. Nanophotonics, 2022, 11(9): 1809-1845.

[19] AN S, ZHENG B, TANG H, et al. Multifunctional metasurface design with a generative adversarial network[J]. Advanced optical materials, 2021, 9(5): 2001433.

[20] LI W, BARATI SEDEH H, TSVETKOV D, et al. Machine learning for engineering meta-atoms with tailored multipolar resonances[J]. Laser & photonics reviews, 2024: 2300855.

[21] MA W, LIU Z, KUDYSHEV Z A, et al. Deep learning for the design of photonic structures[J]. Nature photonics, 2021, 15(2): 77-90.

[22] XIONG B, XU Y, LI W, et al. Deep learning design for multiwavelength infrared image sensors based on dielectric freeform metasurface[J]. Advanced optical materials, 2023: 2302200.

[23] LIU W, WANG X, ZENG M. A nested U-shaped network for accurately predicting directional scattering of all-dielectric nanostructures[J]. Optics letters, 2022, 47(19): 5112-5115.

[24] QIE J, KHORAM E, LIU D, et al. Real-time deep learning design tool for far-field radiation profile[J]. Photonics research, 2021, 9(4): B104-B108.

[25] WIECHA P R, MAJOREL C, GIRARD C, et al. Design of plasmonic directional antennas via evolutionary optimization[J]. Optics express, 2019, 27(20): 29069-29081.

[26] QIN F, ZHANG D, LIU Z, et al. Designing metal-dielectric nanoantenna for unidirectional scattering via Bayesian optimization[J]. Optics express, 2019, 27(21): 31075-31086.

[27] YAN J, ZHU D, BAO Y, et al. Design of multifunctional color routers with Kerker switching using generative adversarial networks[J]. Laser & photonics reviews, 2024: 2300592.

[28] BORGHESI A, GUIZZETTI G. Handbook of optical constants of solids[M]. New York: Academic, 1985: 445-464.

[29] QIN X, ZHANG Z, HUANG C, et al. U2-Net: going deeper with nested U-structure for salient object detection[J]. Pattern recognition, 2020, 106: 107404.

[30] EVLYUKHIN A B, FISCHER T, REINHARDT C, et al. Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles[J]. Physical review B, 2016, 94(20): 20543.

ZENG Ming, ZHAO Feng, WANG Xianghui. Optimization of transverse unidirectional scattering by morphology modification of irregular V-shaped silicon nanoantennas[J]. Optoelectronics Letters, 2025, 21(3): 129
Download Citation