[1] BERNSTEIN K, FRANK D J, GATTIKER A E, et al. High-performance CMOS variability in the 65 nm regime and beyond[J]. IBM Journal of Research and Development, 2006,50(4/5):433-449. doi:10.1147/rd.504.0433.
[2] JOHNSTON A H,LANCASTER C A. A total dose homogeneity study of the 108a operational amplifier[J]. IEEE Transactions on Nuclear Science, 1979,26(6):4769-4774. doi:10.1109/TNS.1979.4330225.
[3] KRUCKMEYER K, MCGEE L, BROWN B, et al. Low dose rate test results of national semiconductor's ELDRS-free bipolar amplifier LM124 and comparators LM139 and LM193[C]// 2008 IEEE Radiation Effects Data Workshop. Tucson,AZ,USA:IEEE, 2008:110-117. doi: 10.1109/REDW.2008.27.
[4] KRUCKMEYER K, MCGEE L, BROWN B, et al. Low dose rate test results of National semiconductor's ELDRS-free bipolar comparators LM111 and LM119[C]// 2009 European Conference on Radiation and Its Effects on Components and Systems. Brugge,Belgium:IEEE, 2009:586-592. doi:10.1109/RADECS.2009.5994726.
[6] FERRARO R,DANZECA S,DILILLO L,et al. Estimation of system survival reliability in a radiation environment based on the available radiation data at component level[C]// 2017 17th European Conference on Radiation and Its Effects on Components and Systems(RADECS). Geneva,Switzerland:IEEE, 2017:1-8. doi:10.1109/RADECS.2017.8696202.
[9] VAN DER VAART A W. Asymptotic statistics[M]. Cambridge:Cambridge University Press, 1998. doi:10.1017/CBO9780511802256.
[10] BARNABY H J, VERMEIRE B, CAMPOLA M J. Improved model for increased surface recombination current in irradiated bipolar junction transistors[J]. IEEE Transactions on Nuclear Science, 2015,62(4):1658-1664. doi:10.1109/TNS.2015.2452229.
[11] LI Lei,CHEN Xiaochi,JIAN Yuan,et al. Improved model for ionization-induced surface recombination current in p-n-p BJTs[J]. IEEE Transactions on Nuclear Science, 2020,67(8):1826-1834. doi:10.1109/TNS.2020.3004710.
[13] KAMOUN L,DUêME P,KERHERVé E,et al. A tunable and reconfigurable MMIC active filter in GaAs technology[J]. Analog Integrated Circuits and Signal Processing, 2014, 9(1): 83-94. doi:10.1007/s10470-013-0249-x.
[14] PANTOLI L,STORNELLI V,LEUZZI G,et al. On-chip active filter in GaAs technology for wireless communication systems[J]. Analog Integrated Circuits and Signal Processing, 2018,96(1):1-7. doi:10.1007/s10470-018-1198-1.
[15] KARACAOGLU U,ROBERTSON I D. MMIC active bandpass filters using varactor-tuned negative resistance elements[J]. IEEE Transactions on Microwave Theory and Techniques, 1995,43(12):2926-2932. doi:10.1109/22.475657.
[16] ZHU Haoran,NING Xinyu,HUANG Zhixiang,et al. An ultra-compact on-chip reconfigurable bandpass filter with semi-lumped topology by using GaAs pHEMT technology[J]. IEEE Access, 2020(8):31606-31613. doi:10.1109/ACCESS.2020.2972932.
[18] DARCEL L, DUêME P,FUNCK R,et al. A new methodology for achieving MMIC bandpass active filters at high frequencies[C]// The 12th GAAS Symposium. Amsterdam,Netherlands:[s.n.], 2004:87-90.
[19] BERGERAS F,DUêME P,PLAZE J P,et al. Novel MMIC architectures of wideband microwave active filters for frequency tuning and bandwidth multiplexing[J]. Microwave and Optical Technology Letters, 2011,53(11):2680-2689. doi:10.1002/mop.26347.