• Journal of Applied Optics
  • Vol. 44, Issue 6, 1219 (2023)
Weichen XU, Haiyang ZHANG*, and Changming ZHAO
Author Affiliations
  • School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.5768/JAO202344.0610008 Cite this Article
    Weichen XU, Haiyang ZHANG, Changming ZHAO. Thermal effect analysis of all-solid-state solar pumped laser[J]. Journal of Applied Optics, 2023, 44(6): 1219 Copy Citation Text show less
    Simplified thermal analysis model of all-solid-state solar pumped laser
    Fig. 1. Simplified thermal analysis model of all-solid-state solar pumped laser
    Solar emission spectrum
    Fig. 2. Solar emission spectrum
    Steady-state temperature distribution diagram of Fresnel lens
    Fig. 3. Steady-state temperature distribution diagram of Fresnel lens
    Irradiance distribution diagram of front surface of conical cavity
    Fig. 4. Irradiance distribution diagram of front surface of conical cavity
    Diagram of steady-state thermal analysis results (contour map)
    Fig. 5. Diagram of steady-state thermal analysis results (contour map)
    Heat distribution curves of crystal rod and conical cavity
    Fig. 6. Heat distribution curves of crystal rod and conical cavity
    Solar irradiance distribution diagram
    Fig. 7. Solar irradiance distribution diagram
    Diagram of steady-state thermal analysis results
    Fig. 8. Diagram of steady-state thermal analysis results
    Solar irradiance distribution diagram
    Fig. 9. Solar irradiance distribution diagram
    Diagram of steady-state thermal analysis results
    Fig. 10. Diagram of steady-state thermal analysis results
    Solar irradiance distribution diagram
    Fig. 11. Solar irradiance distribution diagram
    Diagram of steady-state thermal analysis results
    Fig. 12. Diagram of steady-state thermal analysis results
    Diagram of steady-state thermal analysis results
    Fig. 13. Diagram of steady-state thermal analysis results
    Diagram of steady-state thermal analysis results
    Fig. 14. Diagram of steady-state thermal analysis results
    Diagram of steady-state thermal analysis results
    Fig. 15. Diagram of steady-state thermal analysis results
    Diagram of steady-state thermal analysis results
    Fig. 16. Diagram of steady-state thermal analysis results
    结构材质各向同性热导率/(W/(m·K))
    晶体棒Nd:YAG14(20 ℃);10.5(100 ℃)
    锥形腔YAG14(20 ℃);10.5(100 ℃)
    铜基座和模型后底座397
    菲涅尔透镜聚甲基丙烯酸甲酯(PMMA)0.19
    外壳铝合金151
    Table 1. Materials and corresponding thermal conductivity of each part of simplified laser model
    光源绕X轴旋转上面下面侧左面侧右面后面1面2面
    1.21.11.11.36.85.4130.9
    5.41.21.21.415.919.7123.0
    5.76.71.21.433.852.780.2
    6.01.61.21.451.2105.34.5
    6.11.61.21.473.870.01.5
    5.71.91.21.4122.45.60.4
    10°5.410.01.21.5134.40.20.1
    15°6.125.51.41.5113.90.10
    20°6.151.31.92.477.00.10
    25°9.1121.24.14.612.30.10
    30°10.6112.66.46.38.20.10
    35°10.8103.47.56.87.60.10
    40°10.495.37.67.13.90.10
    50°8.766.77.87.21.900
    60°6.042.66.35.40.700
    70°4.122.13.33.70.300
    80°1.07.80.81.40.100
    90°0000000
    Table 2. Solar ray tracing irradiance distribution
    光线偏转角度简化后受热情况最高温度(位置)结论
    晶体棒及其锥形腔受热440.66 K(晶体棒)可行
    模型底座内表面及铜基座前表面受热389.46 K(晶体棒)可行
    10°菲涅尔透镜及模型底座内表面受热353.88 K(菲涅尔透镜)可行
    25°菲涅尔透镜及铝壳下内表面受热435.97 K(铝壳)可行
    Table 3. Summary of results
    光线偏转角度简化后受热情况结论
    菲涅尔透镜、晶体棒及其锥形腔受热不可行
    菲涅尔透镜、模型底座内表面及铜基座前表面受热不可行
    10°菲涅尔透镜及模型底座内表面受热不可行
    25°菲涅尔透镜及铝壳下内表面受热不可行
    Table 4. Summary of results
    Weichen XU, Haiyang ZHANG, Changming ZHAO. Thermal effect analysis of all-solid-state solar pumped laser[J]. Journal of Applied Optics, 2023, 44(6): 1219
    Download Citation