[1] Hou X. Ultrashort pulse laser and its applications[J]. Journal of Air Force Engineering University (Natural Science Edition), 1, 1-5(2000).
[2] Lu B B, Wang X. Application of ultrashort pulse technology in battlefield reconnaissance radar[J]. Electronic Technology & Software Engineering, 67-68(2020).
[3] Liu J, Tan F Z, Liu C et al. Progress on high-power ultrashort-pulsed thulium-doped fiber lasers[J]. Chinese Journal of Lasers, 44, 0201003(2017).
[4] Wang Z H, Yu J, Fan Z W et al. Research progress of all-solid-state passively Q-switched picosecond laser technology[J]. Chinese Journal of Luminescence, 34, 900-910(2013).
[5] Lin R Y. Study on pulsed fiber lasers with BiTe3As saturable absorbers[D], 2-5(2015).
[6] Eckhardt G, Hellwarth R W, McClung F J et al. Stimulated Raman scattering from organic liquids[J]. Physical Review Letters, 9, 455-457(1962).
[7] Culver W H, Vanderslice J T A, Townsend V W T. Controlled generation of intense light pulses in reverse-pumped Raman lasers[J]. Applied Physics Letters, 12, 189-190(1968).
[8] Losev L L, Soskov V I. High-contrast ratio subpicosecond Nd∶glass laser with Raman master oscillator[J]. Optics Communications, 135, 71-76(1997).
[9] Takahashi E, Matsumoto Y, Matsushima I et al. Compression of high power KrF laser pulse by backward Raman amplification[J]. Fusion Engineering and Design, 44, 133-136(1999).
[10] Murray J, Goldhar J, Eimerl D et al. Raman pulse compression of excimer lasers for application to laser fusion[J]. IEEE Journal of Quantum Electronics, 15, 342-368(1979).
[11] Shi S X, Chen G F, Zhao W[M]. Nonlinear optics, 215-224(2012).
[12] Boyd R W, Masters B R. Nonlinear optics, third edition[J]. Journal of Biomedical Optics, 14, 029902(2009).
[13] Tomov I V, Fedosejevs R, McKen D C et al. Phase conjugation and pulse compression of KrF-laser radiation by stimulated Raman scattering[J]. Optics Letters, 8, 9-11(1983).
[14] Zhu X Z, Lou Q H, Ye Z H et al. Experimental investigation of stimulated Raman scattering in H2 pumped by the third harmonic solid-state laser at 355 nm[J]. Chinese Journal of Lasers, 30, 819-822(2003).
[15] Kazzaz A, Ruschin S, Shoshan I et al. Stimulated Raman scattering in methane-experimental optimization and numerical model[J]. IEEE Journal of Quantum Electronics, 30, 3017-3024(1994).
[16] Liu Y H, Zhou T E, Wu X H et al. High pressure H2 stimulated Raman scattering[J]. Optics and Precision Engineering, 59-62(1987).
[17] Kuwahara K, Takahashi E, Matsumoto Y et al. Compression of high-power KrF laser pulse by backward Raman scattering using focused geometry[J]. Laser and Particle Beams, 17, 275-280(1999).
[18] Hua X Q, Leng J, Yang H P et al. Generation of intense backward stimulated Raman scattering in CH4 pumped by a single longitudinal mode Nd∶YAG laser[J]. Acta Optica Sinica, 26, 91-95(2006).
[19] Colles M J. Efficient stimulated Raman scattering from picosecond pulses[J]. Optics Communications, 1, 169-172(1969).
[20] Maier M, Kaiser W, Giordmaine J A. Intense light bursts in the stimulated Raman effect[J]. Physical Review Letters, 17, 1275-1277(1966).
[21] Adrain R S, Arthurs E G, Sibbett W. Tunable picosecond transient stimulated Raman scattering in ethanol[J]. Optics Communications, 15, 290-292(1975).
[22] Bret G G, Weber H P. Transient stimulated Raman scattering in liquids and evaluation of picosecond pulse duration[J]. IEEE Journal of Quantum Electronics, 4, 342(1968).
[23] Shi J L, Xu J, Luo N N et al. Enhanced stimulated Raman scattering by suppressing stimulated Brillouin scattering in liquid water[J]. Acta Physica Sinica, 68, 044201(2019).
[24] Chen H T, Lou Q H, Ye Z H et al. Solid-state Raman lasers[J]. Laser & Optronics Progress, 42, 55-60, 47(2005).
[25] Eckhardt G, Bortfeld D P, Geller M. Stimulated emission of stokes and anti-stokes Raman lines from diamond, calcite, and α-sulfur single crystals[J]. Applied Physics Letters, 3, 137-138(1963).
[26] Ammann E O, Decker C D. 0.9-W Raman oscillator[J]. Journal of Applied Physics, 48, 1973-1975(1977).
[27] Kurbasov S V, Losev L L. Raman compression of picosecond microjoule laser pulses in KGd(WO4)2 crystal[J]. Optics Communications, 168, 227-232(1999).
[28] Wang Z P, Hu D W, Zhang H J et al. External resonator BaWO4 crystal Raman laser[J]. Infrared and Laser Engineering, 38, 683-686(2009).
[29] Wang Z P, Hu D W, Zhang H J et al. External resonator SrWO4 Raman laser excited by 1064 nm pico-second pulses[J]. Chinese Journal of Lasers, 37, 335-338(2010).
[30] Tempea G, Brabec T. Nonlinear source for the generation of high-energy few-cycle optical pulses[J]. Optics Letters, 23, 1286(1998).
[31] Zeng Z N, Li R X, Xu Z Z. High-intensity pulse compression with plasma nonlinearity[J]. Acta Optica Sinica, 21, 385-389(2001).
[32] Malkin V M, Tsidulko Y A, Fisch N J. Theory of forward Raman scattering of nonstationary short laser pulses and backward Raman compression of ultrapowerful lasers in plasmas[C], TuF3(2000).
[33] Ping Y, Fisch N J et al. Demonstration of ultrashort laser pulse amplification in plasmas by a counterpropagating pumping beam[J]. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 62, R4532-R4535(2000).
[34] Yuan H, Wang Y L, Lu Z W et al. Fluctuation initiation of Stokes signal and its effect on stimulated Brillouin scattering pulse compression[J]. Optics Express, 25, 14378-14388(2017).
[35] Xia J. The study of relations between stimulated Brillouin scattering and stimulated Raman scattering in liquid water[D](2011).
[36] Warrier A M, Lin J P, Pask H M et al. Highly efficient picosecond diamond Raman laser at 1240 and 1485 nm[J]. Optics Express, 22, 3325-3333(2014).
[37] Liu Z H. Pulse compression based on stimulated Brillouin scattering and laser induced breakdown[D], 2-5(2018).
[38] Zhou D J, Guo J W, Zhou C H et al. Backward Raman scattering and amplification based on dual Raman cells[J]. Chinese Journal of Lasers, 43, 0402006(2016).
[39] Caird J. A novel technique for suppression of parasitic superfluorescence in backward Raman amplifiers[J]. IEEE Journal of Quantum Electronics, 16, 489-496(1980).
[40] Mackonis P, Rodin A M, Petrulenas A et al. Transient stimulated Raman amplification of the supercontinuum in KGW with pulse compression[C], C1B_2(2020).
[41] Lian Y D, Wang Y H, Zhang Y Q et al. Research progress of stimulated Brillouin scattering pulse compression technique[J]. High Power Laser and Particle Beams, 33, 051001(2021).
[42] Hu D W, Wang Z P, Xia H R et al. Stimulated Raman scattering of LiIO3 crystal[J]. High Power Laser and Particle Beams, 20, 1883-1886(2008).
[43] Sentrayan K, Major L, Michael A et al. Observation of intense stokes and anti-stokes lines in CH4 pumped by 355 nm of a Nd∶YAG laser[J]. Applied Physics B, 55, 311-318(1992).
[44] Tao Z M, Zhang Y C, Lü Y H et al. Effect of stimulated Raman scattering pumped by fourth harmonic Nd∶YAG laser in methane and analysis of its physical processes[J]. Acta Physica Sinica, 53, 2589-2594(2004).
[45] Cao K F, Huang J, Hu S X. Investigation of stimulated Raman scattering characteristics in D2, H2 and D2/H2 mixtures[J]. Acta Optica Sinica, 35, 0319001(2015).
[46] Fang C Q, Yu G L, Ding J Y et al. High-efficiency and high-pulse-energy 1197 nm laser based on stimulated Raman scattering[J]. Chinese Journal of Lasers, 48, 2001001(2021).