• Laser & Optoelectronics Progress
  • Vol. 60, Issue 17, 1700008 (2023)
Xiaoyi Liu1,*, shuaishuai Wang2, Zhaodong Liu2, Yadong Chen3..., Yinghui Cai2, Chao Zhao2, Tingting Chen2 and Tie Li1|Show fewer author(s)
Author Affiliations
  • 1College of Electronic Information Engineering, Hebei University of Technology, Tianjin 300401, China
  • 2Shandong Key Laboratory of Olefin Catalysis and Polymerization, Binzhou 256500, Shandong , China
  • 3Institute of Science and Technology, Hebei University of Technology, Tianjin 300401, China
  • show less
    DOI: 10.3788/LOP222026 Cite this Article Set citation alerts
    Xiaoyi Liu, shuaishuai Wang, Zhaodong Liu, Yadong Chen, Yinghui Cai, Chao Zhao, Tingting Chen, Tie Li. Research Progress of Pulse Duration Compression via Stimulated Raman Scattering[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1700008 Copy Citation Text show less
    References

    [1] Hou X. Ultrashort pulse laser and its applications[J]. Journal of Air Force Engineering University (Natural Science Edition), 1, 1-5(2000).

    [2] Lu B B, Wang X. Application of ultrashort pulse technology in battlefield reconnaissance radar[J]. Electronic Technology & Software Engineering, 67-68(2020).

    [3] Liu J, Tan F Z, Liu C et al. Progress on high-power ultrashort-pulsed thulium-doped fiber lasers[J]. Chinese Journal of Lasers, 44, 0201003(2017).

    [4] Wang Z H, Yu J, Fan Z W et al. Research progress of all-solid-state passively Q-switched picosecond laser technology[J]. Chinese Journal of Luminescence, 34, 900-910(2013).

    [5] Lin R Y. Study on pulsed fiber lasers with BiTe3As saturable absorbers[D], 2-5(2015).

    [6] Eckhardt G, Hellwarth R W, McClung F J et al. Stimulated Raman scattering from organic liquids[J]. Physical Review Letters, 9, 455-457(1962).

    [7] Culver W H, Vanderslice J T A, Townsend V W T. Controlled generation of intense light pulses in reverse-pumped Raman lasers[J]. Applied Physics Letters, 12, 189-190(1968).

    [8] Losev L L, Soskov V I. High-contrast ratio subpicosecond Nd∶glass laser with Raman master oscillator[J]. Optics Communications, 135, 71-76(1997).

    [9] Takahashi E, Matsumoto Y, Matsushima I et al. Compression of high power KrF laser pulse by backward Raman amplification[J]. Fusion Engineering and Design, 44, 133-136(1999).

    [10] Murray J, Goldhar J, Eimerl D et al. Raman pulse compression of excimer lasers for application to laser fusion[J]. IEEE Journal of Quantum Electronics, 15, 342-368(1979).

    [11] Shi S X, Chen G F, Zhao W[M]. Nonlinear optics, 215-224(2012).

    [12] Boyd R W, Masters B R. Nonlinear optics, third edition[J]. Journal of Biomedical Optics, 14, 029902(2009).

    [13] Tomov I V, Fedosejevs R, McKen D C et al. Phase conjugation and pulse compression of KrF-laser radiation by stimulated Raman scattering[J]. Optics Letters, 8, 9-11(1983).

    [14] Zhu X Z, Lou Q H, Ye Z H et al. Experimental investigation of stimulated Raman scattering in H2 pumped by the third harmonic solid-state laser at 355 nm[J]. Chinese Journal of Lasers, 30, 819-822(2003).

    [15] Kazzaz A, Ruschin S, Shoshan I et al. Stimulated Raman scattering in methane-experimental optimization and numerical model[J]. IEEE Journal of Quantum Electronics, 30, 3017-3024(1994).

    [16] Liu Y H, Zhou T E, Wu X H et al. High pressure H2 stimulated Raman scattering[J]. Optics and Precision Engineering, 59-62(1987).

    [17] Kuwahara K, Takahashi E, Matsumoto Y et al. Compression of high-power KrF laser pulse by backward Raman scattering using focused geometry[J]. Laser and Particle Beams, 17, 275-280(1999).

    [18] Hua X Q, Leng J, Yang H P et al. Generation of intense backward stimulated Raman scattering in CH4 pumped by a single longitudinal mode Nd∶YAG laser[J]. Acta Optica Sinica, 26, 91-95(2006).

    [19] Colles M J. Efficient stimulated Raman scattering from picosecond pulses[J]. Optics Communications, 1, 169-172(1969).

    [20] Maier M, Kaiser W, Giordmaine J A. Intense light bursts in the stimulated Raman effect[J]. Physical Review Letters, 17, 1275-1277(1966).

    [21] Adrain R S, Arthurs E G, Sibbett W. Tunable picosecond transient stimulated Raman scattering in ethanol[J]. Optics Communications, 15, 290-292(1975).

    [22] Bret G G, Weber H P. Transient stimulated Raman scattering in liquids and evaluation of picosecond pulse duration[J]. IEEE Journal of Quantum Electronics, 4, 342(1968).

    [23] Shi J L, Xu J, Luo N N et al. Enhanced stimulated Raman scattering by suppressing stimulated Brillouin scattering in liquid water[J]. Acta Physica Sinica, 68, 044201(2019).

    [24] Chen H T, Lou Q H, Ye Z H et al. Solid-state Raman lasers[J]. Laser & Optronics Progress, 42, 55-60, 47(2005).

    [25] Eckhardt G, Bortfeld D P, Geller M. Stimulated emission of stokes and anti-stokes Raman lines from diamond, calcite, and α-sulfur single crystals[J]. Applied Physics Letters, 3, 137-138(1963).

    [26] Ammann E O, Decker C D. 0.9-W Raman oscillator[J]. Journal of Applied Physics, 48, 1973-1975(1977).

    [27] Kurbasov S V, Losev L L. Raman compression of picosecond microjoule laser pulses in KGd(WO4)2 crystal[J]. Optics Communications, 168, 227-232(1999).

    [28] Wang Z P, Hu D W, Zhang H J et al. External resonator BaWO4 crystal Raman laser[J]. Infrared and Laser Engineering, 38, 683-686(2009).

    [29] Wang Z P, Hu D W, Zhang H J et al. External resonator SrWO4 Raman laser excited by 1064 nm pico-second pulses[J]. Chinese Journal of Lasers, 37, 335-338(2010).

    [30] Tempea G, Brabec T. Nonlinear source for the generation of high-energy few-cycle optical pulses[J]. Optics Letters, 23, 1286(1998).

    [31] Zeng Z N, Li R X, Xu Z Z. High-intensity pulse compression with plasma nonlinearity[J]. Acta Optica Sinica, 21, 385-389(2001).

    [32] Malkin V M, Tsidulko Y A, Fisch N J. Theory of forward Raman scattering of nonstationary short laser pulses and backward Raman compression of ultrapowerful lasers in plasmas[C], TuF3(2000).

    [33] Ping Y, Fisch N J et al. Demonstration of ultrashort laser pulse amplification in plasmas by a counterpropagating pumping beam[J]. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 62, R4532-R4535(2000).

    [34] Yuan H, Wang Y L, Lu Z W et al. Fluctuation initiation of Stokes signal and its effect on stimulated Brillouin scattering pulse compression[J]. Optics Express, 25, 14378-14388(2017).

    [35] Xia J. The study of relations between stimulated Brillouin scattering and stimulated Raman scattering in liquid water[D](2011).

    [36] Warrier A M, Lin J P, Pask H M et al. Highly efficient picosecond diamond Raman laser at 1240 and 1485 nm[J]. Optics Express, 22, 3325-3333(2014).

    [37] Liu Z H. Pulse compression based on stimulated Brillouin scattering and laser induced breakdown[D], 2-5(2018).

    [38] Zhou D J, Guo J W, Zhou C H et al. Backward Raman scattering and amplification based on dual Raman cells[J]. Chinese Journal of Lasers, 43, 0402006(2016).

    [39] Caird J. A novel technique for suppression of parasitic superfluorescence in backward Raman amplifiers[J]. IEEE Journal of Quantum Electronics, 16, 489-496(1980).

    [40] Mackonis P, Rodin A M, Petrulenas A et al. Transient stimulated Raman amplification of the supercontinuum in KGW with pulse compression[C], C1B_2(2020).

    [41] Lian Y D, Wang Y H, Zhang Y Q et al. Research progress of stimulated Brillouin scattering pulse compression technique[J]. High Power Laser and Particle Beams, 33, 051001(2021).

    [42] Hu D W, Wang Z P, Xia H R et al. Stimulated Raman scattering of LiIO3 crystal[J]. High Power Laser and Particle Beams, 20, 1883-1886(2008).

    [43] Sentrayan K, Major L, Michael A et al. Observation of intense stokes and anti-stokes lines in CH4 pumped by 355 nm of a Nd∶YAG laser[J]. Applied Physics B, 55, 311-318(1992).

    [44] Tao Z M, Zhang Y C, Lü Y H et al. Effect of stimulated Raman scattering pumped by fourth harmonic Nd∶YAG laser in methane and analysis of its physical processes[J]. Acta Physica Sinica, 53, 2589-2594(2004).

    [45] Cao K F, Huang J, Hu S X. Investigation of stimulated Raman scattering characteristics in D2, H2 and D2/H2 mixtures[J]. Acta Optica Sinica, 35, 0319001(2015).

    [46] Fang C Q, Yu G L, Ding J Y et al. High-efficiency and high-pulse-energy 1197 nm laser based on stimulated Raman scattering[J]. Chinese Journal of Lasers, 48, 2001001(2021).

    Xiaoyi Liu, shuaishuai Wang, Zhaodong Liu, Yadong Chen, Yinghui Cai, Chao Zhao, Tingting Chen, Tie Li. Research Progress of Pulse Duration Compression via Stimulated Raman Scattering[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1700008
    Download Citation