• Optical Communication Technology
  • Vol. 44, Issue 2, 59 (2020)
QIAN Xin1, BIAN Yuxiang2,3,*, LIU Shaojun1, and FENG Bao2,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.13921/j.cnki.issn1002-5561.2020.02.013 Cite this Article
    QIAN Xin, BIAN Yuxiang, LIU Shaojun, FENG Bao. Quantum key distribution based on squeezed source without monitoring signal disturbance[J]. Optical Communication Technology, 2020, 44(2): 59 Copy Citation Text show less
    References

    [1] WANG L, ZHAO S M, GONG L Y, et al. Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum[J]. Chinese Physics B, 2015, 24(12): 120307-1-120307-8.

    [2] MAO Q P, WANG L, ZHAO S M. Efficient quantum key distribution based on hybrid degrees of freedom[J]. Laser Physics, 2019, 29(8): 085201-1-085201-7.

    [3] MA X, QI B, ZHAO Y, et al. Practical decoy state for quantum key distribution[J]. Physical Review A, 2005, 72(1): 012326-1-012326-15.

    [4] WANG X B. Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors[J]. Physical Review A, 2013, 87(1): 012320-1-012320-8.

    [9] LIU Y, CHEN T Y, WANG L J, et al. Experimental measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2013, 111(13): 130502-1-130502-5.

    [10] SASAKI T, YAMAMOTO Y, KOASHI M. Practical quantum key distribution protocol without monitoring signal disturbance[J]. Nature, 2014, 509: 475-478.

    [11] MAO Q P, WANG L, ZHAO S M. Plug-and-play round-robin differential phase-shift quantum key distribution[J]. Scientific Reports, 2017(7): 15435-1-15435-8.

    [12] GUAN J Y, CAO Z, LIU Y et. al. Experimental Passive Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Physical Review Letters 2015, 144(18): 180502-1-180502-5.

    [13] TAKESUE H, SASAKI T, TAMAKI K et. al. Experimental quantum key distribution without monitoring signal disturbance[J]. Nature Photonics, 2015(9): 827-831.

    [14] WANG S, YIN Z Q, CHEN W, et. al. Experimental demonstration of a quantum key distribution without signal disturbance monitoring[J]. Nature Photonics, 2015(9): 832-836.

    [15] ZHANG Z, YUAN X, CAO Z, et al. Practical round-robin differential-phase-shift quantum key distribution[J]. New Journal of Physics, 2017, 19(3): 033013-1-033013-11.

    [16] YIN H L, FU Y, MAO Y, et al. Detector-decoy quantum key distribution without monitoring signal disturbance[J]. Physical Review A, 2016, 93(2): 022330-1-022330-5.

    [17] LIU L, GUO F Z, QIN S J, et al. Round-robin differential-phase-shift quantum key distribution with a passive decoy state method[J]. Scientific Reports, 2017(7): 42261-1-42261-7.

    [18] WANG L, ZHAO S. Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources[J]. Quantum Information Processing, 2017, 16(4): 100-1-100-15.

    [19] LU Y J, ZHU L, OU Z Y. Security improvement by using a modified coherent state for quantum cryptography[J]. Physical Review A, 2005, 71(3): 032315-1-032315-5.

    [20] YIN Z Q, HAN Z F, SUN F W, et al. Decoy state quantum key distribution with modified coherent state[J]. Physical Review A, 2007, 76(1): 014304-1-014304-4.

    [21] LI M, ZHANG C M, YIN Z Q, et al. Measurement-device-independent quantum key distribution with modified coherent state[J]. Optics Letters, 2014, 39(4): 880-883.

    QIAN Xin, BIAN Yuxiang, LIU Shaojun, FENG Bao. Quantum key distribution based on squeezed source without monitoring signal disturbance[J]. Optical Communication Technology, 2020, 44(2): 59
    Download Citation