• Journal of Synthetic Crystals
  • Vol. 50, Issue 11, 2129 (2021)
BAO Yuting1,2,*, LI Haichao1,2, MA Qin3, and SUN Zan1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    BAO Yuting, LI Haichao, MA Qin, SUN Zan. Synthesis, Structure and Characterization of Co(Ⅲ)/Cu(Ⅱ) Complexes Based on Organic Carboxylic Acid Ligands[J]. Journal of Synthetic Crystals, 2021, 50(11): 2129 Copy Citation Text show less
    References

    [1] HU Z C, DEIBERT B J, LI J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chemical Society Reviews, 2014, 43(16): 5815-5840.

    [8] ZHANG X L, JIN F. A cobalt(Ⅱ) coordination polymer based on a carboxyl- triazolyl-bifunctional ligand: synthesis, characterization and catalytic reduction of 4-nitrophenol[J]. Inorganic Chemistry Communications, 2020, 119: 108075.

    [10] WANG X, YU X W, LIN L, et al. Two metal-organic frameworks based on 2, 5-thiophenedicarboxylic acid and semi-rigid bis-imidazole ligand: luminescence, magnetism and electrocatalytic activities[J]. Polyhedron, 2019, 161: 325-329.

    [11] KHAN M S, KHALID M, SHAHID M. A Co(Ⅱ) coordination polymer derived from pentaerythritol as an efficient photocatalyst for the degradation of organic dyes[J]. Polyhedron, 2021, 196: 114984.

    [12] GAO L L, BIAN Y J, TIAN Y, et al. Structural diversity, gas adsorption and magnetic properties of three coordination polymers based on a rigid multicarboxylate ligand[J]. CrystEngComm, 2020, 22(42): 7046-7053.

    [13] SUN Z, BAO Y T, WANG C, et al. A novel luminescent cadmium(Ⅱ) MOFs exhibiting a sensitive and selective detection of trace amounts of nitroaromatics with excellent recyclability[J]. Inorganica Chimica Acta, 2019, 494: 266-270.

    [14] PENG W, LONG S J, SI C D. A photoluminescent Cd(Ⅱ) coordination polymer with highly selective detection for nitrophenol[J]. Russian Journal of Inorganic Chemistry, 2019, 64(14): 1769-1774.

    [15] ZHAO Q, SI C D. A novel zinc luminescent coordination polymer based on a tetracarboxylate acid ligand for the detection of nitrobenzene[J]. Crystal Research and Technology, 2019, 54(3): 1800155.

    [16] QUAN L, YIN H, WANG D. Bis(5-bromo-pyridine-2-carboxyl-ato-κO)triphenyl-anti-mony(Ⅴ)[J]. Acta Crystallographica Section E, Structure Reports Online, 2008, 64(12): m1503.

    [17] BAROUD A A, MIHAJLOVIC'-LALIC' L E, GLIGORIJEVIC' N, et al. Ruthenium(Ⅱ) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation[J]. Journal of Coordination Chemistry, 2017, 70(5): 831-847.

    [18] HONG M, YIN H D, ZHANG Y W, et al. Coordination geometry of monomeric, dimeric and polymeric organotin(Ⅳ) compounds constructed from 5-bromopyridine-2-carboxylic acid and mono-, di- or tri-organotin precursors[J]. Journal of Molecular Structure, 2013, 1036: 244-251.

    [19] WEI W C, LIU Z, WEI R Z, et al. Synthesis, crystal structure and anticorrosion performance of Zn(Ⅱ) and Ni(Ⅱ) complexes[J]. Journal of Molecular Structure, 2021, 1228: 129452.

    [20] CHAI J, LIU Y F, LIU B, et al. Effect of substituent groups (R=CH3, Br and CF3) on the structure, stability and redox property of [Cr(R-pic)2(H2O)2]NO3·H2O complexes[J]. Journal of Molecular Structure, 2017, 1150: 307-315.

    [21] CHAI J, LIU Y F, DONG J L, et al. Synthesis, structure, chemical and bioactivity behavior of eight chromium(Ⅲ) picolinate derivatives Cr(R-pic)3[J]. Inorganica Chimica Acta, 2017, 466: 151-159.

    [22] DAVIDSON R, HSU Y T, BHAGANI C, et al. Exploring the chemistry and photophysics of substituted picolinates positional isomers in iridium(Ⅲ) bisphenylpyridine complexes[J]. Organometallics, 2017, 36(15): 2727-2735.

    [23] SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallographica Section C, Structural Chemistry, 2015, 71(1): 3-8.

    [24] WU W Y, ZHANG R F, ZHANG X J, et al. Two novel 3 d-4f heterometallic coordination polymers with infinite[Ln4(OH)4]8n+n chains involving in situ decarboxylation[J]. Dalton Transactions, 2015, 44(16): 7144-7147.

    [25] LI J J, FAN T T, QU X L, et al. Temperature-induced 1D lanthanide polymeric frameworks based on Lnn (n=2, 2, 4, 6) cores: synthesis, crystal structures and luminescence properties[J]. Dalton Transactions, 2016, 45(7): 2924-2935.

    [26] SUN Z, SUN J, XI L, et al. Two novel lanthanide metal-organic frameworks: selective luminescent sensing for nitrobenzene, Cu2+, and MnO-4[J]. Crystal Growth & Design, 2020, 20(8): 5225-5234.

    [27] YANG A H, ZOU J Y, WANG W M, et al. Two three-dimensional lanthanide frameworks exhibiting luminescence increases upon dehydration and novel water layer involving in situ decarboxylation[J]. Inorganic Chemistry, 2014, 53(14): 7092-7100.

    [28] WANG M F, HONG X J, ZHAN Q G, et al. Temperature-/solvent-dependent low-dimensional compounds based on quinoline-2, 3-dicarboxylic acid: structures and fluorescent properties[J]. Dalton Transactions, 2012, 41(38): 11898-11906.

    [29] MITSUHASHI R, SUZUKI T, HOSOYA S, et al. Hydrogen-bonded supramolecular structures of cobalt(Ⅲ) complexes with unsymmetrical bidentate ligands: mer/fac interconversion induced by hydrogen-bonding interactions[J]. Crystal Growth & Design, 2017, 17(1): 207-213.

    [31] LLUNELL M, CASANOVA D, CIRERA J, et al. Shape v. 2.0, Universitat de Barcelona, Barcelona, 2010.

    BAO Yuting, LI Haichao, MA Qin, SUN Zan. Synthesis, Structure and Characterization of Co(Ⅲ)/Cu(Ⅱ) Complexes Based on Organic Carboxylic Acid Ligands[J]. Journal of Synthetic Crystals, 2021, 50(11): 2129
    Download Citation