• Spacecraft Recovery & Remote Sensing
  • Vol. 45, Issue 3, 51 (2024)
Yongle GAO1, Jinsheng CHANG2, Yongchong YANG1,*, and Tao WANG1
Author Affiliations
  • 1Xi’an University of Science and Technology, College of Geomatics, Xi’an 710054, China
  • 2Beijing North-Star Technology Development CO. LTD., Beijing 100120, China
  • show less
    DOI: 10.3969/j.issn.1009-8518.2024.03.006 Cite this Article
    Yongle GAO, Jinsheng CHANG, Yongchong YANG, Tao WANG. Application Analysis of Object-Level (OL) Spatio-Temporal Fusion Model in NDVI and LST —— Taking Dali Area as an Example[J]. Spacecraft Recovery & Remote Sensing, 2024, 45(3): 51 Copy Citation Text show less
    References

    [1] F ZHANG, X ZHU, D LIU. Blending MODIS and Landsat Images for Urban Flood Mapping. International Journal of Remote Sensing, 35, 3237-3253(2014).

    [2] Y WANG, X LUO, Q WANG. A Boundary Finding-Based Spatiotemporal Fusion Model for Vegetation Index. International Journal of Remote Sensing, 8236-8261(2021).

    [3] X ZHU, E HELMER, J CHEN et al. A Flexible Spatiotemporal Method for Fusing Satellite Images with Different Resolutions. Remote Sensing of Environment: An Interdisciplinary Journal, 172, 165-177(2016).

    [6] FENG G, MASEK J G, SCHWALLER M R, et al. On the Blending of the Lsat MODIS Surface Reflectance: Predicting Daily Lsat Surface Reflectance[J]. IEEE Transactions on Geoscience Remote Sensing, 2006, 44 (8): 22072218. DOI: 10.1109TGRS. 2006.872081.

    [7] X ZHU, J CHEN, F GAO et al. An Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions. Remote Sensing of Environment, 114, 2610-2623(2010).

    [8] WANG Q, ATKINSON P M. SpatioTempal Fusion f Daily Sentinel2 Images[J]. Remote Sensing of Environment, 2018, 204: 3142. DOI: 10.1016j. rse. 2017.10. 046.

    [9] H ZHANG, Y SUN, W SHI et al. An Object-Based Spatiotemporal Fusion Model for Remote Sensing Images. European Journal of Remote Sensing, 54, 86-101(2021).

    [10] H GAO, X ZHU, Q GUAN et al. cuFSDAF: An Enhanced Flexible Spatiotemporal Data Fusion Algorithm Parallelized Using Graphics Processing Units. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-16(2021).

    [11] K CHIMAN, B BENCE, G FENG et al. A Hybrid Color Mapping Approach to Fusing MODIS and Landsat Images for Forward Prediction. Remote Sensing, 10, 520(2018).

    [12] B BAI, Y TAN, G DONCHYTS et al. A Simple Spatio – Temporal Data Fusion Method Based on Linear Regression Coefficient Compensation. Remote Sensing, 12, 3900(2020).

    [13] D GUO, W SHI, H ZHANG et al. A Flexible Object-Level Processing Strategy to Enhance the Weight Function-Based Spatiotemporal Fusion Method. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-11(2022).

    [14] M HOSSAIN, D CHEN. Segmentation for Object-Based Image Analysis (OBIA): A Review of Algorithms and Challenges from Remote Sensing Perspective. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 115-134(2019).

    [18] D GUO, W SHI, M HAO et al. FSDAF 2.0: Improving the Performance of Retrieving Land Cover Changes and Preserving Spatial Details. Remote Sensing of Environment, 248, 111973(2020).

    [19] G CHEN, H LU, W ZOU et al. Spatiotemporal Fusion for Spectral Remote Sensing: A Statistical Analysis and Review. Journal of King Saud University—Computer and Information Sciences, 35, 259-273(2023).

    [20] M YANG, Y ZHOU, Y XIE et al. Accuracy Evaluation of Four Spatiotemporal Fusion Methods for Different Time Scales. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1-11(2024).

    [21] ZHAO M, YANG R, HU M, et al. Deep LearningBased Technique f Remote Sensing Image Enhancement Using Multiscale Feature Fusion[J]. Senss, 2024, 24(2): 673. DOI: 10.3390s24020673.

    [22] L OSCO, Q WU, E LEMOS et al. The Segment Anything Model (SAM) for Remote Sensing Applications: From Zero to One Shot. International Journal of Applied Earth Observation and Geoinformation, 124, 103540(2023).

    [23] J X ZHOU, J CHEN, X H CHEN et al. Sensitivity of Six Typical Spatiotemporal Fusion Methods to Different Influential Factors: A Comparative Study for a Normalized Difference Vegetation Index Time Series Reconstruction. Remote Sensing of Environment, 252, 112130(2021).

    Yongle GAO, Jinsheng CHANG, Yongchong YANG, Tao WANG. Application Analysis of Object-Level (OL) Spatio-Temporal Fusion Model in NDVI and LST —— Taking Dali Area as an Example[J]. Spacecraft Recovery & Remote Sensing, 2024, 45(3): 51
    Download Citation