• Laser & Optoelectronics Progress
  • Vol. 60, Issue 23, 2300002 (2023)
Bowen Kang, Huan Chen*, Zhenglong Zhang, and Hairong Zheng
Author Affiliations
  • Xi'an Key Laboratory of Optoelectronic Information Processing and Enhancement, School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, Shaanxi , China
  • show less
    DOI: 10.3788/LOP232248 Cite this Article Set citation alerts
    Bowen Kang, Huan Chen, Zhenglong Zhang, Hairong Zheng. China's Top 10 Optical Breakthroughs: Sub-50-ns Ultrafast Upconversion Luminescence of Rare-Earth-Doped Nanoparticle[J]. Laser & Optoelectronics Progress, 2023, 60(23): 2300002 Copy Citation Text show less
    References

    [1] Han S Y, Deng R R, Xie X J et al. Enhancing luminescence in lanthanide-doped upconversion nanoparticles[J]. Angewandte Chemie International Edition, 53, 11702-11715(2014).

    [2] Lee C, Xu E Z, Liu Y W et al. Giant nonlinear optical responses from photon-avalanching nanoparticles[J]. Nature, 589, 230-235(2021).

    [3] Haase M, Schäfer H. Upconverting nanoparticles[J]. Angewandte Chemie International Edition, 50, 5808-5829(2011).

    [4] Kindem J M, Ruskuc A, Bartholomew J G et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity[J]. Nature, 580, 201-204(2020).

    [5] Dibos A M, Raha M, Phenicie C M et al. Atomic source of single photons in the telecom band[J]. Physical Review Letters, 120, 243601(2018).

    [6] Alizadehkhaledi A, Frencken A L, van Veggel F C J M et al. Isolating nanocrystals with an individual erbium emitter: a route to a stable single-photon source at 1550 nm wavelength[J]. Nano Letters, 20, 1018-1022(2020).

    [7] Sharifi Z, Dobinson M, Hajisalem G et al. Isolating and enhancing single-photon emitters for 1550 nm quantum light sources using double nanohole optical tweezers[J]. The Journal of Chemical Physics, 154, 184204(2021).

    [8] Yin C M, Rancic M, de Boo G G et al. Optical addressing of an individual erbium ion in silicon[J]. Nature, 497, 91-94(2013).

    [9] Zhong M J, Hedges M P, Ahlefeldt R L et al. Optically addressable nuclear spins in a solid with a six-hour coherence time[J]. Nature, 517, 177-180(2015).

    [10] Song C X, Zhang S B, Zhou Q et al. Upconversion nanoparticles for bioimaging[J]. Nanotechnology Reviews, 6, 233-242(2017).

    [11] Zhang C J, Zhang C Y, Zhang Z L et al. Self-suspended rare-earth doped up-conversion luminescent waveguide: propagating and directional radiation[J]. Opto-Electronic Advances, 3, 190045(2020).

    [12] Thomas S, Senellart P. The race for the ideal single-photon source is on[J]. Nature Nanotechnology, 16, 367-368(2021).

    [13] Sun S, Kim H, Luo Z C et al. A single-photon switch and transistor enabled by a solid-state quantum memory[J]. Science, 361, 57-60(2018).

    [14] Oulton R F, Sorger V J, Zentgraf T et al. Plasmon lasers at deep subwavelength scale[J]. Nature, 461, 629-632(2009).

    [15] Chen D S, He R H, Cai H B et al. Chiral single-photon generators[J]. ACS Nano, 15, 1912-1916(2021).

    [16] Wang Y, Yu J Y, Mao Y F et al. Stable, high-performance sodium-based plasmonic devices in the near infrared[J]. Nature, 581, 401-405(2020).

    [17] Tomm N, Javadi A, Antoniadis N O et al. A bright and fast source of coherent single photons[J]. Nature Nanotechnology, 16, 399-403(2021).

    [18] Deng Z Y, Yang X H, Zhang J W et al. Studies on photophysical properties of nanoscale and microscale rare-earth-doped upconverting materials[J]. Chinese Journal of Lasers, 50, 0113005(2023).

    [19] Yang D D, Dong G P, Qiu J R. Light polarization characteristics of rare earth ions-doped materials: a review[J]. Laser & Optoelectronics Progress, 58, 1516017(2021).

    [20] Ge X X, Wang Y F. LSPR resonance wavelength regulation of silver cone nanoarrays[J]. The Journal of Light Scattering, 34, 161-166(2022).

    [21] Lassiter J B, McGuire F, Mock J J et al. Plasmonic waveguide modes of film-coupled metallic nanocubes[J]. Nano Letters, 13, 5866-5872(2013).

    [22] Hutter E, Fendler J H. Exploitation of localized surface plasmon resonance[J]. Advanced Materials, 16, 1685-1706(2004).

    [23] Zayats A V, Smolyaninov I I, Maradudin A A. Nano-optics of surface plasmon polaritons[J]. Physics Reports, 408, 131-314(2005).

    [24] Wang Z H, Gao W F, Zhang Q Y. The optical absorption properties of the structure based on metal-dielectric-metal silver nanoring arrays[J]. The Journal of Light Scattering, 34, 273-277(2022).

    [25] Drexhage K H. IV interaction of light with monomolecular dye layers[J]. Progress in Optics, 12, 163-232(1974).

    [26] Drexhage K H. Influence of a dielectric interface on fluorescence decay time[J]. Journal of Luminescence, 1/2, 693-701(1970).

    [27] Purcell E M, Torrey H C, Pound R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Physical Review, 69, 37-38(1946).

    [28] Moreau A, Ciracì C, Mock J J et al. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas[J]. Nature, 492, 86-89(2012).

    [29] Kim J, Chacón R, Wang Z J et al. Measuring 3D orientation of nanocrystals via polarized luminescence of rare-earth dopants[J]. Nature Communications, 12, 1943(2021).

    [30] Würth C, Manley P, Voigt R et al. Metasurface enhanced sensitized photon upconversion: toward highly efficient low power upconversion applications and nanoscale E-field sensors[J]. Nano Letters, 20, 6682-6689(2020).

    [31] Xu J H, Dong Z G, Asbahi M et al. Multiphoton upconversion enhanced by deep subwavelength near-field confinement[J]. Nano Letters, 21, 3044-3051(2021).

    [32] Das A, Mao C C, Cho S et al. Over 1000-fold enhancement of upconversion luminescence using water-dispersible metal-insulator-metal nanostructures[J]. Nature Communications, 9, 4828(2018).

    [33] Reimer M E, Cher C. The quest for a perfect single-photon source[J]. Nature Photonics, 13, 734-736(2019).

    [34] Liu Y J, Lu Y Q, Yang X S et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy[J]. Nature, 543, 229-233(2017).

    [35] Shan X C, Wang F, Wang D J et al. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles[J]. Nature Nanotechnology, 16, 531-537(2021).

    [36] Chen H, Sun M J, Ma J et al. Multiplasmons-pumped excited-state absorption and energy transfer upconversion of rare-earth-doped luminescence beyond the diffraction limit[J]. ACS Photonics, 8, 1335-1343(2021).

    [37] He F, Gai S L, Yang P P et al. Luminescence modification and application of the lanthanide upconversion fluorescence materials[J]. Chinese Journal of Luminescence, 39, 92-106(2018).

    [38] Lyu L N, Cheong H, Ai X Z et al. Near-infrared light-mediated rare-earth nanocrystals: recent advances in improving photon conversion and alleviating the thermal effect[J]. NPG Asia Materials, 10, 685-702(2018).

    [39] Garfield D J, Borys N J, Hamed S M et al. Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission[J]. Nature Photonics, 12, 402-407(2018).

    [40] Chen S, Weitemier A Z, Zeng X et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics[J]. Science, 359, 679-684(2018).

    [41] Liu J H, Wang Q R, Sang X et al. Modulated luminescence of lanthanide materials by local surface plasmon resonance effect[J]. Nanomaterials, 11, 1037(2021).

    [42] Xu H, Han S Y, Deng R R et al. Anomalous upconversion amplification induced by surface reconstruction in lanthanide sublattices[J]. Nature Photonics, 15, 732-737(2021).

    [43] You W W, Tu D T, Zheng W et al. Lanthanide-doped disordered crystals: site symmetry and optical properties[J]. Journal of Luminescence, 201, 255-264(2018).

    [44] Du K M, Feng J, Gao X et al. Nanocomposites based on lanthanide-doped upconversion nanoparticles: diverse designs and applications[J]. Light: Science & Applications, 11, 222(2022).

    [45] Chen H, Jiang Z H, Hu H T et al. Sub-50-ns ultrafast upconversion luminescence of a rare-earth-doped nanoparticle[J]. Nature Photonics, 16, 651-657(2022).

    [46] Wu Y M, Xu J H, Poh E T et al. Upconversion superburst with sub-2 μs lifetime[J]. Nature Nanotechnology, 14, 1110-1115(2019).

    [47] Meng Y J, Huang D X, Li H et al. Bright single-nanocrystal upconversion at sub 0.5 W cm-2 irradiance via coupling to single nanocavity mode[J]. Nature Photonics, 17, 73-81(2023).

    [48] Zhang W H, Ding F, Chou S Y. Large enhancement of upconversion luminescence of NaYF₄∶Yb³⁺/Er³⁺ nanocrystal by 3D plasmonic nano-antennas[J]. Advanced Materials, 24, OP236-OP241(2012).

    [49] Sun M J, Chen H, Guo L et al. Manipulating the upconversion luminescence of Yb3+/Er3+ doped nanoparticles by the sheet-shaped nanocavity[J]. Journal of Luminescence, 248, 118944(2022).

    [50] Zhang W N, Li J, Lei H X et al. Plasmon-induced selective enhancement of green emission in lanthanide-doped nanoparticles[J]. ACS Applied Materials & Interfaces, 9, 42935-42942(2017).

    [51] Zheng B, Lin L, Huang L L et al. Enhancement of three-photon near-infrared quantum cutting in β-NaYF4∶Er3+ nanoparticles by Ag nanocubes[J]. Materials Research Bulletin, 101, 199-204(2018).

    [52] Li T, Liu H M, Qin Y J et al. Preparation and application of stable gold-silver and gold-copper alloy nanoparticles[J]. The Journal of Light Scattering, 34, 73-77(2022).

    Bowen Kang, Huan Chen, Zhenglong Zhang, Hairong Zheng. China's Top 10 Optical Breakthroughs: Sub-50-ns Ultrafast Upconversion Luminescence of Rare-Earth-Doped Nanoparticle[J]. Laser & Optoelectronics Progress, 2023, 60(23): 2300002
    Download Citation