[1] MA Y Z, JIA H T, GAO H L, et al. Path loss of non-line-of-sight ultraviolet light communication channelin polydisperse aerosol systems[J]. Optoelectronics letters, 2022, 18(3): 158-165.
[2] CAO T, WU T F, PAN C Y, et al. Single-collision-induced path loss model of reflection-assisted non-line-of-sight ultraviolet communications[J].Optics express, 2022, 30(9): 15227-15237.
[3] TARASENKOV M V, BELOV V V, POZNAKHAREV E S. Wavelengths in the UV range optimal for atmospheric optical communication on scattered radiation in the daytime and at night[D]. Tomsk: V.E. Zuev Institute of Atmospheric Optics, 2021, 11916: 119160L1-19160L9.
[4] CAO T, GAO X Y, WU T F, et al. Single-scatter path loss model of led-based non-line-of-sight ultraviolet communications[J]. Optoelectronics letters, 2021, 46(16): 4013-4016.
[5] LIU B Y, GONG C, XU Z Y. Correlation analysis and link gain prediction for optical wireless scattering communication over broad spectra[J]. IEEE transactions on wireless communications, 2020, 19(2): 1386-1396.
[6] YUAN R Z, MA J S, SU P, et al. Monte-Carlo integration models for multiple scattering based optical wireless communication[J]. IEEE transactions on communications,2020, 68(1): 334-348.
[7] HAN Y, DING L, WANG Y P, et al. Polarized light illuminated scattering characteristics of single airborne particle[J]. Journal of quantitative spectroscopy and radiative transfer, 2021, 266: 107568.
[8] ZHENG X, TANG Y F, DU J Y. Analysis of transmission characteristics of non-line-of-sight ultraviolet light under complex channel conditions[J]. MATEC web of conferences, 2021, 336: 01012.
[9] SONG P, CAI Y M, GENG X J, et al. Study on scattering transmission characteristics of wireless UV communication based on particle size distribution[J]. Spectroscopy and spectral analysis, 2022, 42(3): 970-977.
[10] KONSTANTIN L, UMAPADA P, ANTONIO R, et al. Mie calculation of electromagnetic near-field for a multilayered sphere[J]. Computer physics communications, 2017, 214: 225-230.
[11] HE L M, WU H, LI J F, et al. Solid particle swarm measurement in jet fuel based on Mie scattering theory and extinction method[J]. Sensors, 2023, 23(5): 2837.
[12] TANG J Y, DING Y F, LIU T R, et al, Ultraviolet communication with a large scattering angle via artificial agglomerate fog[J]. Optics express, 2023, 31(14): 23149-23170.
[13] LIU Q F, JING B, PENG C, et al. Hygroscopicity of internally mixed multi-component aerosol particles of atmospheric relevance[J]. Atmospheric environment, 2016, 125(2016): 69-77.
[14] ZHU S H, ZHANG H, ZHOU C, et al. Optical properties of mixed black and brown carbon aerosols[J]. Opticsexpress, 2022, 30(19): 33588-33602.
[15] BORAH D K, MAREDDY V, VOELZ D G. Single and double scattering event analysis for ultraviolet communication channels[J]. Optics express, 2021, 29(4): 5327-5342.
[16] CAO T, SONG J, PAN C Y. Simplified closed-form single-scatter path loss model of non-line-of-sight ultraviolet communications in noncoplanar geometry[J]. IEEE journal of quantum electronics, 2021, 57(2): 1-9.
[17] SUN Y, GONG C, XU Z Y, et al. Link gain and pulse width broadening evaluation of non-line-of-sight optical wireless scattering communication over broad spectra[J].IEEE photonics journal, 2017, 9(3): 1-12.
[18] NIE X, MAO Q J. Inversion of aerosol particle size distribution using an improved stochastic particle swarm optimization algorithm[J]. Remote sensing, 2022, 14(16): 4085.