• Laser & Optoelectronics Progress
  • Vol. 56, Issue 7, 071503 (2019)
Zhenjie Feng1,* and Weixue Han2
Author Affiliations
  • 1 School of Computer and Information Engineering, Anyang Normal University, Anyang, Henan 455000, China
  • 2 Yongyou Software Company Tianjin Branch, Tianjin 300508, China
  • show less
    DOI: 10.3788/LOP56.071503 Cite this Article Set citation alerts
    Zhenjie Feng, Weixue Han. Seismic Signal Blind Denoising Based on W-Weighted Nuclear Norm Minimization[J]. Laser & Optoelectronics Progress, 2019, 56(7): 071503 Copy Citation Text show less
    References

    [1] Zhang H, Chi Y, Zhou Y T et al. Three dimensional seismic signal denoising based on four-dimensional block matching cooperative filtering combined with principle component analysis[J]. Laser & Optoelectronics Progress, 55, 041007(2018).

    [2] Zhang M, Lü X Q, Wu L et al. Multiplicative denoising method based on deep residual learning[J]. Laser & Optoelectronics Progress, 55, 031004(2018).

    [3] Zheng C L, He D D, Fei Q G. Improved digital image correlation method based on gray gradient denoised by regularization method[J]. Acta Optica Sinica, 38, 0812002(2018).

    [4] Zhang J H, Lü N, Tian L Y et al. An overview of the methods and techniques for seismic data noise attenuation[J]. Progress in Geophysics, 21, 546-553(2006).

    [5] Shao J, Sun C Y, Tang J et al. Micro-seismic data denoising based on sparse representations over learned dictionary in the wavelet domain[J]. Oil Geophysical Prospecting, 51, 254-260(2016).

    [6] Hennenfent G, Herrmann F J. Seismic denoising with nonuniformly sampled curvelets[J]. Computing in Science & Engineering, 8, 16-25(2006). http://doi.ieeecomputersociety.org/10.1109/MCSE.2006.49

    [7] Li J H, Zhang Y J, Qi R et al. Wavelet-based higher order correlative stacking for seismic data denoising in the curvelet domain[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 3810-3820(2017). http://ieeexplore.ieee.org/document/7896554/

    [8] Liu C M, Wang D L, Wang T et al. Random seismic noise attenuation based on the Shearlet transform[J]. Acta Petrolei Sinica, 35, 692-699(2014).

    [9] Chen Y K, Zhou Y T, Chen W et al. Empirical low-rank approximation for seismic noise attenuation[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 4696-4711(2017). http://ieeexplore.ieee.org/document/7927752/

    [10] Zhou Y T, Shi C J, Chen H M et al. Spike-like blending noise attenuation using structural low-rank decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 14, 1633-1637(2017). http://ieeexplore.ieee.org/document/8003280/

    [11] Gu S H, Zhang L, Zuo W M et al. Weighted nuclear norm minimization with application to image denoising. [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2862-2869(2014).

    [12] Gu S H, Xie Q, Meng D Y et al. Weighted nuclear norm minimization and its applications to low level vision[J]. International Journal of Computer Vision, 121, 183-208(2017). http://link.springer.com/article/10.1007/s11263-016-0930-5

    [13] Wang D X. The research of seismic random noise suppression method based on the WNNM[D]. Changchun: Jilin University, 63-86(2017).

    [14] Liu X H, Tanaka M, Okutomi M. Noise level estimation using weak textured patches of a single noisy image. [C]//IEEE International Conference on Image Processing, 665-668(2012).

    [15] Pyatykh S, Hesser J, Zheng L. Image noise level estimation by principal component analysis[J]. IEEE Transactions on Image Processing, 22, 687-699(2013). http://www.ncbi.nlm.nih.gov/pubmed/23033431

    [16] Ke Q F, Kanade T. Robust L1 norm factorization in the presence of outliers and missing data by alternative convex programming. [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1, 739-746(2005).

    [17] Wright J, Ganesh A, Rao S et al. Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. [C]//Advances in Neural Information Processing Systems, 87, 20-56(2009).

    [18] Fazel M, Hindi H, Boyd S P. A rank minimization heuristic with application to minimum order system approximation. [C]//American Control Conference, 4734-4739(2001).

    [19] Blomberg N, Rojas C R, Wahlberg B. Approximate regularization paths for nuclear norm minimization using singular value bounds. [C]//IEEE Signal Processing and Signal Processing Education Workshop, 190-195(2015).

    [20] Au-Yeung E. Dictionary learning for sparse representation based on nuclear norm minimization. [C]//International Conference on Sampling Theory and Applications, 570-574(2017).

    [21] Candès E J, Recht B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 9, 717-772(2009). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4797640

    [22] Cai J F, Candès E J, Shen Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 20, 1956-1982(2010). http://dl.acm.org/citation.cfm?id=1958487

    [23] Dabov K, Foi A, Katkovnik V et al. Image denoising by sparse 3D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 16, 2080-2095(2007). http://europepmc.org/abstract/MED/17688213

    [24] Chan R H, Ng M K. Conjugate gradientmethods for Toeplitz systems[J]. SIAM Review, 38, 427-482(1996). http://dl.acm.org/citation.cfm?id=240445

    [25] Bhaumik D K, Kapur K, Gibbons R D. Testing parameters of a gamma distribution for small samples[J]. Technometrics, 51, 326-334(2009). http://www.tandfonline.com/doi/abs/10.1198/tech.2009.07038

    [26] Witkovsk V. Computing the distribution of a linear combination of inverted gamma variables[J]. IEEE Transactions on Geoscience & Remote Sensing, 37, 79-90(2001). http://papers.ssrn.com/abstract=3162731