• Optoelectronics Letters
  • Vol. 21, Issue 3, 177 (2025)
Ripei ZHANG and Chunyi CHEN
DOI: 10.1007/s11801-025-3288-5 Cite this Article
ZHANG Ripei, CHEN Chunyi. Rendering acceleration method based on JND and sample gradient[J]. Optoelectronics Letters, 2025, 21(3): 177 Copy Citation Text show less
References

[1] CONSTANTIN J, ANDRE B, IBTISSAM C. Pooling spike neural network for fast rendering in global illumination[J]. Neural computing and applications, 2020, 32(2): 427-446.

[2] ZHANG A, YAN Z, SHIGANG W. Illumination estimation for augmented reality based on a global illumination model[J]. Multimedia tools and applications, 2019, 78: 33487-33503.

[3] JIANG G, BERNHARD K. Deep radiance caching: convolutional autoencoders deeper in ray tracing[J]. Computers & graphics, 2021, 94: 22-31.

[4] YANG K, CHEN C Y, HU X J, et al. Monte Carlo rendering image denoising algorithm using multiple feature non-local mean filter[J]. Journal of system simulation, 2022, 34(6): 1259-1266.

[5] LANG S Q, CHEN C Y, SHEN Z Y, et al. Adaptive rendering algorithm based on visual-driven gradient field filtering reconstruction[J]. Journal of small microcomputers, 2022: 1-7. (in Chinese)

[6] HOU Y, YOON S E. A survey on deep learning-based Monte Carlo denoising[J]. Computational visual media, 2021, 7(2): 17.

[7] SHEN Z Y, CHEN C Y, ZHANG R P. Perception-JND-driven path tracing for reducing sample budget[J]. The visual computer, 2024, 25: 1-15.

[8] XING Q, CHEN C Y. Path tracing denoising based on SURE adaptive sampling and neural network[J]. IEEE access, 2020, 8: 116336-116349.

[9] BUISINE J, BIGAND A, SYANVE R, et al. Stopping criterion during rendering of computer-generated images based on SVD-entropy[J]. Entropy, 2021, 23(1): 75.

[10] WEIER M, STENGEL M, ROTH T, et al. Perception-driven accelerated rendering[J]. Computer graphics forum, 2017, 36(2): 611-643.

[11] LIN W, GHINA G. Progress and opportunities in modelling just noticeable difference (JND) for multimedia[J]. IEEE transactions on multimedia, 2021, 24: 3706-3721.

[12] JAKAETIYA V, LIN W S, JAISWAL S, et al. Just noticeable difference for natural images using RMS contrast and feed-back mechanism[J]. Neurocomputing, 2018, 275: 330-376.

[13] KOSKELA M K, IMMONEN K V, VIITANEN T T, et al. Instantaneous foveated preview for progressive Monte Carlo rendering[J]. Computational visual media, 2018, 4(3): 267-276.

[14] WANG L, SHI X, LIU Y. Foveated rendering: a state-of-the-art survey[EB/OL]. (2022-11-15)[2023-10-23]. https://arxiv.org/abs/2211.07969.

[15] XU S, CHEN Z, ZHANG H W, et al. Improved remote sensing image target detection based on YOLOv7[J]. Optoelectronics letters, 2024, 20(4): 234-242.

[16] ZHU Y C, YANG S, TONG J, et al. Multi-scale detector optimized for small target[J]. Optoelectronics letters, 2024, 20(4): 243-248.

[17] MUELLAR J H, THOMAS N, PHILIP V, et al. Temporally adaptive shading reuse for real-time rendering and virtual reality[J]. ACM transactions on graphics, 2021, 40(2): 1-14.

[18] YANG X, LING W S, LU Z, et al. Just noticeable distortion model and its applications in video coding[J]. Signal processing: image communication, 2005, 20(7): 662-680.

[19] HARVEY C, DEBATTISTA K, et al. Multi-modal perception for selective rendering[J]. Computer graphics forum, 2017, 36(1): 172-183.