• Laser & Optoelectronics Progress
  • Vol. 60, Issue 16, 1628001 (2023)
Dongqing Huang1,2,3, Weiming Xu1,2,3,*, Wendi Xu1,2,3, Xiaoying He1,2,3, and Kaixiang Pan1,2,3
Author Affiliations
  • 1The Academy of Digital China, Fuzhou University, Fuzhou 350108, Fujian, China
  • 2Key Laboratory of Spatial Data Mining & Information Sharing, Ministry of Education, Fuzhou University, Fuzhou 350002, Fujian, China
  • 3National Engineering Research Centre of Geospatial Information Technology, Fuzhou University, Fuzhou 350002, Fujian, China
  • show less
    DOI: 10.3788/LOP222553 Cite this Article Set citation alerts
    Dongqing Huang, Weiming Xu, Wendi Xu, Xiaoying He, Kaixiang Pan. High-Resolution Remote Sensing Image Classification Based on DeeplabV3+ Network[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1628001 Copy Citation Text show less
    Network architecture of DeeplabV3+
    Fig. 1. Network architecture of DeeplabV3+
    Bottleneck residual block
    Fig. 2. Bottleneck residual block
    Network architecture of Xception_65
    Fig. 3. Network architecture of Xception_65
    Network architecture of MS-XDeeplabV3+ and MS-MDeeplabV3+
    Fig. 4. Network architecture of MS-XDeeplabV3+ and MS-MDeeplabV3+
    Schematic of DCA structure
    Fig. 5. Schematic of DCA structure
    Partial samples of CCF dataset
    Fig. 6. Partial samples of CCF dataset
    Comparison of the classification results of the four models. (a) Original image; (b) label; (c) MDeeplabV3+; (d) XDeeplabV3+;(e) MS-MDeeplabV3+; (f) MS-XDeeplabV3+
    Fig. 7. Comparison of the classification results of the four models. (a) Original image; (b) label; (c) MDeeplabV3+; (d) XDeeplabV3+;(e) MS-MDeeplabV3+; (f) MS-XDeeplabV3+
    Model structureEncoderDecoder
    MobilenetV2Xception_65Skip a layer fusionLayer-by-layer fusionChannel moduleMulti-scale supervision
    MDeeplabV3+
    XDeeplabV3+
    MS-MDeeplabV3+
    MS-XDeeplabV3+
    Table 1. Similarities and differences between the four network structures
    Input sizeOperationtcns
    2562×3Conv2d3212
    1282×32Bottleneck11611
    1282×16Bottleneck62422
    642×24Bottleneck63232
    322×32Bottleneck66442
    162×64Bottleneck69631
    162×96Bottleneck616031
    162×160Bottleneck632011
    Table 2. Detailed configuration of the MobilenetV2
    ParameterBuildingArableForestWaterRoadGrassOther
    Label0123456
    Percentage /%2.7950.8717.8717.740.351.967.38
    Table 3. Proportion of each category in the CCF dataset
    MethodIoUmIoUOAKappa
    BuildingArableForestWaterRoadGrassOther
    MDeeplabV3+0.68820.80470.78280.82490.20150.22860.62330.59340.80270.7735
    XDeeplabV3+0.71440.82400.82670.87060.25540.20340.64800.62040.83480.7992
    MS-MDeeplabV3+0.72170.82340.81860.86250.34310.22980.64420.63480.85020.8297
    MS-XDeeplabV3+0.76500.88360.84370.91680.47740.33090.66150.69700.91220.8646
    Table 4. Quantitative evaluation of the classification results of each model
    MethedParameter size /MBTime /minmIoU
    FCN364.737.80.5586
    U-Net305.333.60.5739
    SegNet307.634.50.5748
    DeeplabV3+312.239.10.6199
    E-Deeplab387.347.80.6835
    Algorithm in Ref.[18246.437.20.6621
    Algorithm in Ref.[19332.642.40.6537
    MDeeplabV3+52.713.30.5934
    XDeeplabV3+148.518.70.6204
    MS-MDeeplabV3+55.317.60.6348
    MS-XDeeplabV3+151.123.90.6970
    Table 5. Comparison of different network models' training results
    IDWeight of side outputmIoUOAKappa
    D1D2D3D4
    100010.61590.82140.7975
    20.30.30.810.63170.84850.8283
    311110.63480.85020.8297
    Table 6. Comparison of different loss weights for
    IDWeight of side outputmIoUOAKappa
    D1D2D3D4
    100010.66810.88270.8447
    20.30.30.810.69330.90960.8629
    311110.69700.91220.8646
    Table 7. Comparison of different loss weights for
    Dongqing Huang, Weiming Xu, Wendi Xu, Xiaoying He, Kaixiang Pan. High-Resolution Remote Sensing Image Classification Based on DeeplabV3+ Network[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1628001
    Download Citation