• Laser & Optoelectronics Progress
  • Vol. 59, Issue 23, 2314001 (2022)
Ping Xu, Sihui Zhang, Rui Song, Jie Wang*, and Haibin Wu
Author Affiliations
  • State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
  • show less
    DOI: 10.3788/LOP202259.2314001 Cite this Article Set citation alerts
    Ping Xu, Sihui Zhang, Rui Song, Jie Wang, Haibin Wu. 583 nm Laser Frequency Stabilization Experiment Based on Iodine Molecule Modulation Transfer Spectroscopy and Optical Cavity[J]. Laser & Optoelectronics Progress, 2022, 59(23): 2314001 Copy Citation Text show less
    References

    [1] Norcia M A, Ferlaino F. Developments in atomic control using ultracold magnetic lanthanides[J]. Nature Physics, 17, 1349-1357(2021).

    [2] Schmitt M, Wenzel M, Böttcher F et al. Self-bound droplets of a dilute magnetic quantum liquid[J]. Nature, 539, 259-262(2016).

    [3] Chomaz L, Baier S, Petter D et al. Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a macrodroplet in a dipolar quantum fluid[J]. Physical Review X, 6, 041039(2016).

    [4] Norcia M A, Politi C, Klaus L et al. Two-dimensional supersolidity in a dipolar quantum gas[J]. Nature, 596, 357-361(2021).

    [5] Ban H Y, Jacka M, Hanssen J L et al. Laser cooling transitions in atomic erbium[J]. Optics Express, 13, 3185-3195(2005).

    [6] Berglund A J, Lee S A, McClelland J J. Sub-Doppler laser cooling and magnetic trapping of erbium[J]. Physical Review A, 76, 053418(2007).

    [7] Aikawa K, Frisch A, Mark M et al. Bose-Einstein condensation of erbium[J]. Physical Review Letters, 108, 210401(2012).

    [8] Ulitzsch J, Babik D, Roell R et al. Bose-Einstein condensation of erbium atoms in a quasielectrostatic optical dipole trap[J]. Physical Review A, 95, 043614(2017).

    [9] Phelps G A, Hébert A, Krahn A et al. Sub-second production of a quantum degenerate gas[EB/OL]. https://arxiv.org/abs/2007.10807

    [10] Seo B, Chen P, Chen Z T et al. Efficient production of a narrow-line erbium magneto-optical trap with two-stage slowing[J]. Physical Review A, 102, 013319(2020).

    [11] Frisch A. Dipolar quantum gases of erbium[D], 11-17(2014).

    [12] Meng T F, Wu Y L, Ji Z H et al. Frequency stabilized diode laser based on cesium molecular saturated absorption spectroscopy[J]. Chinese Journal of Lasers, 37, 1182-1185(2010).

    [13] Wang J, Gao J, Yang B D et al. Comparison of frequency locking of 780 nm diode laser via rubidium saturated absorption and polarization spectroscopies[J]. Chinese Journal of Optics, 4, 305-312(2011).

    [14] Nakagawa K, Sato Y, Musha M et al. Modulation-free acetylene-stabilized lasers at 1542 nm using modulation transfer spectroscopy[J]. Applied Physics B, 80, 479-482(2005).

    [15] Song W, Zhu X X, Wu B et al. Research on frequency stabilization characteristics of multi-parameter dependent laser source based on modulated transfer spectrum[J]. Acta Photonica Sinica, 50, 1114003(2021).

    [16] Hong Y, Hou X, Chen D J et al. Research on frequency stabilization technology of modulation transfer spectroscopy based on Rb87[J]. Chinese Journal of Lasers, 48, 2101003(2021).

    [17] Forest D H, Powis R A, Cochrane E C A et al. High resolution laser spectroscopy of naturally occurring ruthenium isotopes[J]. Journal of Physics G: Nuclear and Particle Physics, 41, 025106(2014).

    [18] Dinklage A, Lokajczyk T, Kunze H J et al. In situ density measurement for a thermal lithium beam employing diode lasers[J]. Review of Scientific Instruments, 69, 321-322(1998).

    [19] Wang W L, Ye J, Jiang H L et al. Frequency stabilization of a 399-nm laser by modulation transfer spectroscopy in an ytterbium hollow cathode lamp[J]. Chinese Physics B, 20, 013201(2011).

    [20] Frisch A, Aikawa K, Mark M et al. Hyperfine structure of laser-cooling transitions in Fermionic erbium-167[J]. Physical Review A, 88, 032508(2013).

    [21] Yao B, Chen Q F, Chen Y J et al. 280 mHz linewidth DBR fiber laser based on PDH frequency stabilization with ultrastable cavity[J]. Chinese Journal of Lasers, 48, 0501014(2021).

    [22] Drever R W P, Hall J L, Kowalski F V et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 31, 97-105(1983).

    [23] Sansonetti C J. Precise measurements of hyperfine components in the spectrum of molecular iodine[J]. Journal of the Optical Society of America B, 14, 1913-1920(1997).

    [24] Sun D L, Zhou C, Zhou L et al. Modulation transfer spectroscopy in a lithium atomic vapor cell[J]. Optics Express, 24, 10649-10662(2016).

    [25] Zhang J, Wei D, Xie C D et al. Characteristics of absorption and dispersion for rubidium D2 lines with the modulation transfer spectrum[J]. Optics Express, 11, 1338-1344(2003).

    [26] Noh H R, Park S E. Modulation transfer spectroscopy for D2 transition line of rubidium[C](2013).

    [27] Wu B, Zhou Y, Weng K X et al. Modulation transfer spectroscopy for D1 transition line of rubidium[J]. Journal of the Optical Society of America B, 35, 2705-2710(2018).

    [28] Bertinetto F, Cordiale P, Galzerano G et al. Frequency stabilization of DBR diode laser against Cs absorption lines at 852 nm using the modulation transfer method[J]. IEEE Transactions on Instrumentation and Measurement, 50, 490-492(2001).

    [29] Galzerano G, Bertinetto F, Bava E. Characterization of the modulation transfer spectroscopy method by means of He-Ne lasers and 127I2 absorption lines at λ=612 nm[J]. Metrologia, 37, 149-154(2000).

    [30] Eickhoff M L, Hall J L. Optical frequency standard at 532 nm[J]. IEEE Transactions on Instrumentation and Measurement, 44, 155-158(1995).

    [31] Zang E J, Cao J P, Li Y et al. 532 nm iodine molecular optical frequency standards[J]. Chinese Journal of Lasers, 34, 203-208(2007).

    [32] Zang E J, Cao J P, Li Y et al. Realization of four-pass I2 absorption cell in 532-nm optical frequency standard[J]. IEEE Transactions on Instrumentation and Measurement, 56, 673-676(2007).

    [33] Qian J, Liu Z Y, Zhang X P et al. A new type of iodine-stabilized He-Ne laser at 633 nm[J]. Acta Metrologica Sinica, 29, 10-13(2008).

    [34] Huang Y C, Guan Y C, Suen T H et al. Absolute frequency measurement of molecular iodine hyperfine transitions at 647 nm[J]. Applied Optics, 57, 2102-2106(2018).

    [35] Liu T, Yan S B, Li L P et al. Frequency stabilization of laser diode via modulation transfer spectrum in cesium vapor cell[J]. Acta Photonica Sinica, 32, 5-8(2003).

    [36] Liu T, Li L P, Yan S B et al. Experimental investigation of modulation transfer spectrum of cesium D2 line[J]. Chinese Journal of Lasers, 30, 791-794(2003).

    [37] Xu Z Y, Peng X X, Li L H et al. Modulation transfer spectroscopy for frequency stabilization of 852 nm DBR diode lasers[J]. Laser Physics, 30, 025701(2020).

    [38] Gatti D, Gotti R, Sala T et al. Wide-bandwidth Pound-Drever-Hall locking through a single-sideband modulator[J]. Optics Letters, 40, 5176-5179(2015).

    [39] Thorpe J I, Numata K, Livas J. Laser frequency stabilization and control through offset sideband locking to optical cavities[J]. Optics Express, 16, 15980-15990(2008).

    [40] Lu B, Wang D J. Note: a four-pass acousto-optic modulator system for laser cooling of sodium atoms[J]. The Review of Scientific Instruments, 88, 076105(2017).

    [41] Duong Q A, Nguyen T D, Vu T T et al. Suppression of residual amplitude modulation appeared in commercial electro-optic modulator to improve iodine-frequency-stabilized laser diode using frequency modulation spectroscopy[J]. Journal of the European Optical Society-Rapid Publications, 14, 25(2018).

    [42] Lu Q M, Shen Q, Cao Y et al. Ultra-low-noise balanced detectors for optical time-domain measurements[J]. IEEE Transactions on Nuclear Science, 66, 1048-1055(2019).

    [43] Inoue R, Miyazawa Y, Kozuma M. Magneto-optical trapping of optically pumped metastable europium[J]. Physical Review A, 97, 061607(2018).

    [44] Sukachev D, Sokolov A, Chebakov K et al. Magneto-optical trap for thulium atoms[J]. Physical Review A, 82, 011405(2010).

    Ping Xu, Sihui Zhang, Rui Song, Jie Wang, Haibin Wu. 583 nm Laser Frequency Stabilization Experiment Based on Iodine Molecule Modulation Transfer Spectroscopy and Optical Cavity[J]. Laser & Optoelectronics Progress, 2022, 59(23): 2314001
    Download Citation