[1] Norcia M A, Ferlaino F. Developments in atomic control using ultracold magnetic lanthanides[J]. Nature Physics, 17, 1349-1357(2021).
[2] Schmitt M, Wenzel M, Böttcher F et al. Self-bound droplets of a dilute magnetic quantum liquid[J]. Nature, 539, 259-262(2016).
[3] Chomaz L, Baier S, Petter D et al. Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a macrodroplet in a dipolar quantum fluid[J]. Physical Review X, 6, 041039(2016).
[4] Norcia M A, Politi C, Klaus L et al. Two-dimensional supersolidity in a dipolar quantum gas[J]. Nature, 596, 357-361(2021).
[5] Ban H Y, Jacka M, Hanssen J L et al. Laser cooling transitions in atomic erbium[J]. Optics Express, 13, 3185-3195(2005).
[6] Berglund A J, Lee S A, McClelland J J. Sub-Doppler laser cooling and magnetic trapping of erbium[J]. Physical Review A, 76, 053418(2007).
[7] Aikawa K, Frisch A, Mark M et al. Bose-Einstein condensation of erbium[J]. Physical Review Letters, 108, 210401(2012).
[8] Ulitzsch J, Babik D, Roell R et al. Bose-Einstein condensation of erbium atoms in a quasielectrostatic optical dipole trap[J]. Physical Review A, 95, 043614(2017).
[10] Seo B, Chen P, Chen Z T et al. Efficient production of a narrow-line erbium magneto-optical trap with two-stage slowing[J]. Physical Review A, 102, 013319(2020).
[11] Frisch A. Dipolar quantum gases of erbium[D], 11-17(2014).
[12] Meng T F, Wu Y L, Ji Z H et al. Frequency stabilized diode laser based on cesium molecular saturated absorption spectroscopy[J]. Chinese Journal of Lasers, 37, 1182-1185(2010).
[13] Wang J, Gao J, Yang B D et al. Comparison of frequency locking of 780 nm diode laser via rubidium saturated absorption and polarization spectroscopies[J]. Chinese Journal of Optics, 4, 305-312(2011).
[14] Nakagawa K, Sato Y, Musha M et al. Modulation-free acetylene-stabilized lasers at 1542 nm using modulation transfer spectroscopy[J]. Applied Physics B, 80, 479-482(2005).
[15] Song W, Zhu X X, Wu B et al. Research on frequency stabilization characteristics of multi-parameter dependent laser source based on modulated transfer spectrum[J]. Acta Photonica Sinica, 50, 1114003(2021).
[16] Hong Y, Hou X, Chen D J et al. Research on frequency stabilization technology of modulation transfer spectroscopy based on Rb87[J]. Chinese Journal of Lasers, 48, 2101003(2021).
[17] Forest D H, Powis R A, Cochrane E C A et al. High resolution laser spectroscopy of naturally occurring ruthenium isotopes[J]. Journal of Physics G: Nuclear and Particle Physics, 41, 025106(2014).
[18] Dinklage A, Lokajczyk T, Kunze H J et al. In situ density measurement for a thermal lithium beam employing diode lasers[J]. Review of Scientific Instruments, 69, 321-322(1998).
[19] Wang W L, Ye J, Jiang H L et al. Frequency stabilization of a 399-nm laser by modulation transfer spectroscopy in an ytterbium hollow cathode lamp[J]. Chinese Physics B, 20, 013201(2011).
[20] Frisch A, Aikawa K, Mark M et al. Hyperfine structure of laser-cooling transitions in Fermionic erbium-167[J]. Physical Review A, 88, 032508(2013).
[21] Yao B, Chen Q F, Chen Y J et al. 280 mHz linewidth DBR fiber laser based on PDH frequency stabilization with ultrastable cavity[J]. Chinese Journal of Lasers, 48, 0501014(2021).
[22] Drever R W P, Hall J L, Kowalski F V et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 31, 97-105(1983).
[23] Sansonetti C J. Precise measurements of hyperfine components in the spectrum of molecular iodine[J]. Journal of the Optical Society of America B, 14, 1913-1920(1997).
[24] Sun D L, Zhou C, Zhou L et al. Modulation transfer spectroscopy in a lithium atomic vapor cell[J]. Optics Express, 24, 10649-10662(2016).
[25] Zhang J, Wei D, Xie C D et al. Characteristics of absorption and dispersion for rubidium D2 lines with the modulation transfer spectrum[J]. Optics Express, 11, 1338-1344(2003).
[26] Noh H R, Park S E. Modulation transfer spectroscopy for D2 transition line of rubidium[C](2013).
[27] Wu B, Zhou Y, Weng K X et al. Modulation transfer spectroscopy for D1 transition line of rubidium[J]. Journal of the Optical Society of America B, 35, 2705-2710(2018).
[28] Bertinetto F, Cordiale P, Galzerano G et al. Frequency stabilization of DBR diode laser against Cs absorption lines at 852 nm using the modulation transfer method[J]. IEEE Transactions on Instrumentation and Measurement, 50, 490-492(2001).
[29] Galzerano G, Bertinetto F, Bava E. Characterization of the modulation transfer spectroscopy method by means of He-Ne lasers and 127I2 absorption lines at λ=612 nm[J]. Metrologia, 37, 149-154(2000).
[30] Eickhoff M L, Hall J L. Optical frequency standard at 532 nm[J]. IEEE Transactions on Instrumentation and Measurement, 44, 155-158(1995).
[31] Zang E J, Cao J P, Li Y et al. 532 nm iodine molecular optical frequency standards[J]. Chinese Journal of Lasers, 34, 203-208(2007).
[32] Zang E J, Cao J P, Li Y et al. Realization of four-pass I2 absorption cell in 532-nm optical frequency standard[J]. IEEE Transactions on Instrumentation and Measurement, 56, 673-676(2007).
[33] Qian J, Liu Z Y, Zhang X P et al. A new type of iodine-stabilized He-Ne laser at 633 nm[J]. Acta Metrologica Sinica, 29, 10-13(2008).
[34] Huang Y C, Guan Y C, Suen T H et al. Absolute frequency measurement of molecular iodine hyperfine transitions at 647 nm[J]. Applied Optics, 57, 2102-2106(2018).
[35] Liu T, Yan S B, Li L P et al. Frequency stabilization of laser diode via modulation transfer spectrum in cesium vapor cell[J]. Acta Photonica Sinica, 32, 5-8(2003).
[36] Liu T, Li L P, Yan S B et al. Experimental investigation of modulation transfer spectrum of cesium D2 line[J]. Chinese Journal of Lasers, 30, 791-794(2003).
[37] Xu Z Y, Peng X X, Li L H et al. Modulation transfer spectroscopy for frequency stabilization of 852 nm DBR diode lasers[J]. Laser Physics, 30, 025701(2020).
[38] Gatti D, Gotti R, Sala T et al. Wide-bandwidth Pound-Drever-Hall locking through a single-sideband modulator[J]. Optics Letters, 40, 5176-5179(2015).
[39] Thorpe J I, Numata K, Livas J. Laser frequency stabilization and control through offset sideband locking to optical cavities[J]. Optics Express, 16, 15980-15990(2008).
[40] Lu B, Wang D J. Note: a four-pass acousto-optic modulator system for laser cooling of sodium atoms[J]. The Review of Scientific Instruments, 88, 076105(2017).
[41] Duong Q A, Nguyen T D, Vu T T et al. Suppression of residual amplitude modulation appeared in commercial electro-optic modulator to improve iodine-frequency-stabilized laser diode using frequency modulation spectroscopy[J]. Journal of the European Optical Society-Rapid Publications, 14, 25(2018).
[42] Lu Q M, Shen Q, Cao Y et al. Ultra-low-noise balanced detectors for optical time-domain measurements[J]. IEEE Transactions on Nuclear Science, 66, 1048-1055(2019).
[43] Inoue R, Miyazawa Y, Kozuma M. Magneto-optical trapping of optically pumped metastable europium[J]. Physical Review A, 97, 061607(2018).
[44] Sukachev D, Sokolov A, Chebakov K et al. Magneto-optical trap for thulium atoms[J]. Physical Review A, 82, 011405(2010).