[1] Plane J M C, Gardner C S, Yu J, et al. Mesospheric Na layer at 40°N: modeling and observations[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D3): 3773-3788.
[2] Chu X Z, Papen G. Resonance fluorescence lidar for measurements of the middle and upper atmosphere[M]∥Fujii T, Fukuchi T. Laser Remote Sensing.1 st ed. Boca Raton: CRC Press, 2005: 235-240.
[3] Bills R E, Gardner C S, She C Y. Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere[J]. Optical Engineering, 1991, 30(1): 13-21.
[4] Kaifler B. Na Lidar at ALOMAR: electrooptic improvements, analysis algorithms, and selected atmospheric observations 80 to 100 km above Northern Norway[D]. Ulm: Ulm University, 2009.
[5] She C Y, Yu J R. Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region[J]. Geophysical Research Letters, 1994, 21(17): 1771-1774.
[6] She C Y, Sherman J, Yuan T, et al. The first 80-hour continuous lidar campaign for simultaneous observation of mesopause region temperature and wind[J]. Geophysical Research Letters, 2003, 30(6): 1319-1323.
[7] Hu X, Yan Z A, Guo S Y, et al. Sodium fluorescence Doppler lidar to measure atmospheric temperature in the mesopause region[J]. Chinese Science Bulletin, 2011, 56(4/5): 417-423.
[8] Li T, Fang X, Liu W, et al. Narrowband sodium lidar for the measurements of mesopause region temperature and wind[J]. Applied Optics, 2012, 51(22): 5401-5411.
[9] Xia Y, Du L F, Cheng X W, et al. Development of a solid-state sodium Doppler lidar using an all-fiber-coupled injection seeding unit for simultaneous temperature and wind measurements in the mesopause region[J]. Optics Express, 2017, 25(5): 5264-5278.
[10] Xia Y, Wang Z L, Cheng X W, et al. All-solid-state narrowband sodium lidar system and preliminary result[J]. Chinese Journal of Lasers, 2015, 42(s1): s113003.
[11] Li F Q, Yang Y, Cheng X W, et al. The techniques and progress of wind and temperature lidar in WIPM[C]∥The 27th International Laser Radar Conference, July 10, 2015, New York, USA. Les Ulis: EDP Sciences, 2016, 119: 12002.
[12] Xiang J F, Wang L G, Li L, et al. Automatic frequency stabilization system of external cavity diode laser based on digital signal processing technology[J]. Acta Optica Sinica, 2017, 37(9): 0914002.
[13] Yu Q, Xiong W, Zhang Y, et al. Design and implementation of miniaturized frequency-stabilized laser system with low power consumption[J]. Chinese Journal of Lasers, 2016, 43(8): 0801010.
[14] Yuan D D, Hu S L, Liu H H, et al. Research of laser frequency stabilization[J]. Laser & Optoelectronics Progress, 2011,48(8): 081401.