• Laser & Optoelectronics Progress
  • Vol. 55, Issue 10, 102801 (2018)
Xia Yuan1,*, Cheng Xuewu2, Li Faquan2, and Li Yajuan1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop55.102801 Cite this Article Set citation alerts
    Xia Yuan, Cheng Xuewu, Li Faquan, Li Yajuan. Laser Frequency Stabilization and Shifting Applied in Narrowband Sodium Lidar System for Wind and Temperature Measurement[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102801 Copy Citation Text show less
    References

    [1] Plane J M C, Gardner C S, Yu J, et al. Mesospheric Na layer at 40°N: modeling and observations[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D3): 3773-3788.

    [2] Chu X Z, Papen G. Resonance fluorescence lidar for measurements of the middle and upper atmosphere[M]∥Fujii T, Fukuchi T. Laser Remote Sensing.1 st ed. Boca Raton: CRC Press, 2005: 235-240.

    [3] Bills R E, Gardner C S, She C Y. Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere[J]. Optical Engineering, 1991, 30(1): 13-21.

    [4] Kaifler B. Na Lidar at ALOMAR: electrooptic improvements, analysis algorithms, and selected atmospheric observations 80 to 100 km above Northern Norway[D]. Ulm: Ulm University, 2009.

    [5] She C Y, Yu J R. Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region[J]. Geophysical Research Letters, 1994, 21(17): 1771-1774.

    [6] She C Y, Sherman J, Yuan T, et al. The first 80-hour continuous lidar campaign for simultaneous observation of mesopause region temperature and wind[J]. Geophysical Research Letters, 2003, 30(6): 1319-1323.

    [7] Hu X, Yan Z A, Guo S Y, et al. Sodium fluorescence Doppler lidar to measure atmospheric temperature in the mesopause region[J]. Chinese Science Bulletin, 2011, 56(4/5): 417-423.

    [8] Li T, Fang X, Liu W, et al. Narrowband sodium lidar for the measurements of mesopause region temperature and wind[J]. Applied Optics, 2012, 51(22): 5401-5411.

    [9] Xia Y, Du L F, Cheng X W, et al. Development of a solid-state sodium Doppler lidar using an all-fiber-coupled injection seeding unit for simultaneous temperature and wind measurements in the mesopause region[J]. Optics Express, 2017, 25(5): 5264-5278.

    [10] Xia Y, Wang Z L, Cheng X W, et al. All-solid-state narrowband sodium lidar system and preliminary result[J]. Chinese Journal of Lasers, 2015, 42(s1): s113003.

    [11] Li F Q, Yang Y, Cheng X W, et al. The techniques and progress of wind and temperature lidar in WIPM[C]∥The 27th International Laser Radar Conference, July 10, 2015, New York, USA. Les Ulis: EDP Sciences, 2016, 119: 12002.

    [12] Xiang J F, Wang L G, Li L, et al. Automatic frequency stabilization system of external cavity diode laser based on digital signal processing technology[J]. Acta Optica Sinica, 2017, 37(9): 0914002.

    [13] Yu Q, Xiong W, Zhang Y, et al. Design and implementation of miniaturized frequency-stabilized laser system with low power consumption[J]. Chinese Journal of Lasers, 2016, 43(8): 0801010.

    [14] Yuan D D, Hu S L, Liu H H, et al. Research of laser frequency stabilization[J]. Laser & Optoelectronics Progress, 2011,48(8): 081401.

    [15] Qu Z, Zhang L, Tong S F, et al. Insertion loss characteristics of acousto-optic frequency shifter in optical phase-locked loop and its optimization[J]. Laser & Optoelectronics Progress, 2017, 54(10): 100609.

    Xia Yuan, Cheng Xuewu, Li Faquan, Li Yajuan. Laser Frequency Stabilization and Shifting Applied in Narrowband Sodium Lidar System for Wind and Temperature Measurement[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102801
    Download Citation