• Acta Optica Sinica (Online)
  • Vol. 1, Issue 2, 0208001 (2024)
Shaocong Liang1, Jialin Cheng1, Zhihui Yan1,2, and Xiaojun Jia1,2,*
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, Shanxi , China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi , China
  • show less
    DOI: 10.3788/AOSOL240434 Cite this Article Set citation alerts
    Shaocong Liang, Jialin Cheng, Zhihui Yan, Xiaojun Jia. Preparation of 200 MHz Broadband Squeezed State of Optical Fields at Fiber Communication Window (Invited)[J]. Acta Optica Sinica (Online), 2024, 1(2): 0208001 Copy Citation Text show less
    References

    [1] Raussendorf R, Briegel H J. A one-way quantum computer[J]. Physical Review Letters, 86, 5188-5191(2001).

    [2] Zhao J, Liu K, Jeng H et al. A high-fidelity heralded quantum squeezing gate[J]. Nature Photonics, 14, 306-309(2020).

    [3] Asavanant W, Shiozawa Y, Yokoyama S et al. Generation of time-domain-multiplexed two-dimensional cluster state[J]. Science, 366, 373-376(2019).

    [4] Konno S, Asavanant W, Hanamura F et al. Logical states for fault-tolerant quantum computation with propagating light[J]. Science, 383, 289-293(2024).

    [5] Caves C M. Quantum-mechanical noise in an interferometer[J]. Physical Review D, 23, 1693-1708(1981).

    [6] Goda K, Miyakawa O, Mikhailov E E et al. A quantum-enhanced prototype gravitational-wave detector[J]. Nature Physics, 4, 472-476(2008).

    [7] Tse M, Yu H C, Kijbunchoo N et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy[J]. Physical Review Letters, 123, 231107(2019).

    [8] Steinlechner S, Bauchrowitz J, Meinders M et al. Quantum-dense metrology[J]. Nature Photonics, 7, 626-630(2013).

    [9] Guo X S, Breum C R, Borregaard J et al. Distributed quantum sensing in a continuous-variable entangled network[J]. Nature Physics, 16, 281-284(2020).

    [10] Zuo X J, Yan Z H, Feng Y N et al. Quantum interferometer combining squeezing and parametric amplification[J]. Physical Review Letters, 124, 173602(2020).

    [11] Yan Z H, Qin J L, Qin Z Z et al. Generation of non-classical states of light and their application in deterministic quantum teleportation[J]. Fundamental Research, 1, 43-49(2021).

    [12] Furusawa A, Sorensen J L, Braunstein S L et al. Unconditional quantum teleportation[J]. Science, 282, 706-709(1998).

    [13] Huo M R, Qin J L, Cheng J L et al. Deterministic quantum teleportation through fiber channels[J]. Science Advances, 4, eaas9401(2018).

    [14] Grosshans F, van Assche G, Wenger J et al. Quantum key distribution using gaussian-modulated coherent states[J]. Nature, 421, 238-241(2003).

    [15] Zhang Y C, Chen Z Y, Pirandola S et al. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber[J]. Physical Review Letters, 125, 010502(2020).

    [16] Pi Y D, Wang H, Pan Y et al. Sub-Mbps key-rate continuous-variable quantum key distribution with local local oscillator over 100-km fiber[J]. Optics Letters, 48, 1766-1769(2023).

    [17] Michel T, Haw J Y, Marangon D G et al. Real-time source-independent quantum random-number generator with squeezed states[J]. Physical Review Applied, 12, 034017(2019).

    [18] Cheng J L, Liang S C, Qin J L et al. Semi-device-independent quantum random number generator with a broadband squeezed state of light[J]. NPJ Quantum Information, 10, 20(2024).

    [19] Cheng J L, Liang S C, Qin J L et al. Quantum randomness introduced through squeezing operations and random number generation[J]. Optics Express, 32, 18237-18246(2024).

    [20] Shamir A. How to share a secret[J]. Communications of the ACM, 22, 612-613(1979).

    [21] Gaertner S, Kurtsiefer C, Bourennane M et al. Experimental demonstration of four-party quantum secret sharing[J]. Physical Review Letters, 98, 020503(2007).

    [22] Zhou Y Y, Yu J, Yan Z H et al. Quantum secret sharing among four players using multipartite bound entanglement of an optical field[J]. Physical Review Letters, 121, 150502(2018).

    [23] Braunstein S L, van Loock P. Quantum information with continuous variables[J]. Reviews of Modern Physics, 77, 513-577(2005).

    [24] Li X Y, Pan Q, Jing J T et al. Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam[J]. Physical Review Letters, 88, 047904(2002).

    [25] Jing J T, Zhang J, Yan Y et al. Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables[J]. Physical Review Letters, 90, 167903(2003).

    [26] Slusher R E, Hollberg L W, Yurke B et al. Observation of squeezed states generated by four-wave mixing in an optical cavity[J]. Physical Review Letters, 55, 2409-2412(1985).

    [27] Wu L A, Kimble H J, Hall J L et al. Generation of squeezed states by parametric down conversion[J]. Physical Review Letters, 57, 2520-2523(1986).

    [28] Yurke B. Use of cavities in squeezed-state generation[J]. Physical Review A, 29, 408-410(1984).

    [29] Andersen U L, Gehring T, Marquardt C et al. 30 years of squeezed light generation[J]. Physica Scripta, 91, 053001(2016).

    [30] Vahlbruch H, Mehmet M, Danzmann K et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 117, 110801(2016).

    [31] Zhou Y Y, Jia X J, Li F et al. Experimental generation of 84 dB entangled state with an optical cavity involving a wedged type-‍Ⅱ nonlinear crystal[J]. Optics Express, 23, 4952-4959(2015).

    [32] Liang S C, Cheng J L, Qin J L et al. High-speed quantum radio-frequency-over-light communication[J]. Physical Review Letters, 132, 140802(2024).

    [33] Liang S C, Cheng J L, Qin J L et al. Frequency-division multiplexing continuous variable quantum dense coding with broadband entanglement[J]. Laser & Photonics Reviews, 2400094(2024).

    [34] Serikawa T, Yoshikawa J I, Makino K et al. Creation and measurement of broadband squeezed vacuum from a ring optical parametric oscillator[J]. Optics Express, 24, 28383-28391(2016).

    [35] Breitenbach G, Müller T, Pereira S F et al. Squeezed vacuum from a monolithic optical parametric oscillator[J]. Journal of the Optical Society of America B, 12, 2304-2309(1995).

    [36] Ast S, Mehmet M, Schnabel R. High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity[J]. Optics Express, 21, 13572-13579(2013).

    [37] Drever R W P, Hall J L, Kowalski F V et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 31, 97-105(1983).

    [38] Guo R, Yang W H, Guo Y et al. Green light-induced infrared absorption effect in preparation experiment of high-powerbright squeezed state light field of 1064 nm[J]. Acta Optica Sinica, 43, 1027001(2023).

    Shaocong Liang, Jialin Cheng, Zhihui Yan, Xiaojun Jia. Preparation of 200 MHz Broadband Squeezed State of Optical Fields at Fiber Communication Window (Invited)[J]. Acta Optica Sinica (Online), 2024, 1(2): 0208001
    Download Citation