[1] Yu Z J, Li X, Li Y L et al. Minor damage location method for aircraft skins based on marked honeycomb model[J]. Laser & Optoelectronics Progress, 56, 180301(2019).
[2] Buckhorst A F, Kluge-Wilkes A, Schmitt R H. Flying metrology and defect identification for aircraft surface inspection[J]. PhotonicsViews, 16, 68-71(2019).
[3] Xia R B, Zhao J B, Zhang T Y et al. Detection method of manufacturing defects on aircraft surface based on fringe projection[J]. Optik, 208, 164332(2020).
[4] Siegel M, Gunatilake P. Remote enhanced visual inspection of aircraft by a mobile robot[C](1998).
[5] Masserey B, Raemy C, Fromme P. High-frequency guided ultrasonic waves for hidden defect detection in multi-layered aircraft structures[J]. Ultrasonics, 54, 1720-1728(2014).
[6] Moustakidis S, Anagnostis A, Karlsson P et al. Non-destructive inspection of aircraft composite materials using triple IR imaging[J]. IFAC-PapersOnLine, 49, 291-296(2016).
[7] Wang X Y, Wu S H, Liu X Y et al. Observation of aircraft wake vortex based on coherent Doppler lidar[J]. Acta Optica Sinica, 41, 0901001(2021).
[8] Zhou Z X. Overview of NDT methods for mechanical cracks[J]. Journal of Mechanical & Electrical Engineering, 34, 1138-1143(2017).
[9] Jovančević I, Larnier S, Orteu J J et al. Automated exterior inspection of an aircraft with a pan-tilt-zoom camera mounted on a mobile robot[J]. Journal of Electronic Imaging, 24, 061110(2015).
[10] Wu J, Li X, Liu S Y et al. Global three-dimensional reconstruction method for visual detection of aircraft skin damage based on rear positioning[J]. Acta Optica Sinica, 41, 1115002(2021).
[11] Liu H X. Damage detection and recognition of aircraft surface image using deep network[D](2018).
[12] Li Y T, Huang H S, Xie Q S et al. Research on a surface defect detection algorithm based on MobileNet-SSD[J]. Applied Sciences, 8, 1678(2018).
[13] Li H. High-level feature learning and damage monitoring of aircraft surface images[D](2019).
[14] Li B, Wang C, Wu J et al. Surface defect detection of aeroengine components based on improved YOLOv4 algorithm[J]. Laser & Optoelectronics Progress, 58, 1415004(2021).
[16] Zhang G J, Lu S J, Zhang W. CAD-net: a context-aware detection network for objects in remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 10015-10024(2019).
[17] Yang X, Yang J R, Yan J C et al. SCRDet: towards more robust detection for small, cluttered and rotated objects[C], 8231-8240(2019).
[18] Yi J R, Wu P X, Liu B et al. Oriented object detection in aerial images with box boundary-aware vectors[C], 2149-2158(2021).
[19] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).
[20] Li J, Wang Y B, Wang C G et al. DSFD: dual shot face detector[C], 5055-5064(2019).
[21] Wang P Q, Chen P F, Yuan Y et al. Understanding convolution for semantic segmentation[C], 1451-1460(2018).
[22] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C], 7132-7141(2018).
[23] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11211, 3-19(2018).
[24] Hou Q B, Zhou D Q, Feng J S. Coordinate attention for efficient mobile network design[C], 13708-13717(2021).