[1] MU X, WEI J, DONG J H, et al. The effect of sacrificial anode on corrosion protection of Q235B steel in simulated tidal zone[J]. Acta Metallurgica Sinica, 2014, 50(11): 1294-1304 (in Chinese).
[2] BU Y Y, AO J P. A review on photoelectrochemical cathodic protection semiconductor thin films for metals[J]. Green Energy & Environment, 2017, 2(4): 331-362.
[3] MOMENI M M, MOTALEBIAN M, GHAYEB Y, et al. Photoelectrochemical cathodic protection of stainless susing W- and Cr-doped/codoped TiO2 nanotube thin film photoanodes[J]. Journal of the Electrochemical Society, 2021, 168(8): 081504.
[4] MOMENI M M, GHAYEB Y, MOOSAVI N. Preparation of Ni-Pt/Fe-TiO2 nanotube films for photoelectrochemical cathodic protection of 403 stainless steel[J]. Nanotechnology, 2018, 29(42): 425701.
[5] XIE X, LIU L, OGUZIE E E, et al. CoPi/Co(OH)2 modified Ta3N5 as new photocatalyst for photoelectrochemical cathodic protection of 304 stainless steel[J]. Materials, 2019, 12(1): 134.
[6] HUANG J S, SHINOHARA T, TSUJIKAWA S. Effects of interfacial iron oxides on corrosion protection of carbon steel by TiO2 coating under illumination[J]. Zairyo-to-Kankyo, 1997, 46(10): 651-661.
[7] PARK H, KIM K Y, CHOI W. Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode[J]. The Journal of Physical Chemistry B, 2002, 106(18): 4775-4781.
[8] TATSUMA T, SAITOH S, OHKO Y, et al. TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability[J]. Chemistry of Materials, 2001, 13(9): 2838-2842.
[9] YUN H, LIN C J, LI J, et al. Low-temperature hydrothermal formation of a net-like structured TiO2 film and its performance of photogenerated cathode protection[J]. Applied Surface Science, 2008, 255(5): 2113-2117.
[10] SUN M M, CHEN Z Y, BU Y Y, et al. Effect of ZnO on the corrosion of zinc, Q235 carbon steel and 304 stainless steel under white light illumination[J]. Corrosion Science, 2014, 82: 77-84.
[11] YANG Y, CHENG Y F. One-step facile preparation of ZnO nanorods as high-performance photoanodes for photoelectrochemical cathodic protection[J]. Electrochimica Acta, 2018, 276: 311-318.
[12] BU Y Y, LI W B, YU J Q, et al. Fabrication of SrTiO3 nanocrystalline film photoelectrode and its photoelectrochemical anticorrosion properties for stainless steel[J]. Acta Physico-Chimica Sinica, 2011, 27(10): 2393-2399 (in Chinese).
[13] JING J P, CHEN Z Y, BU Y Y, et al. Significantly enhanced photoelectrochemical cathodic protection performance of hydrogen treated Cr-doped SrTiO3 by Cr6+ reduction and oxygen vacancy modification[J]. Electrochimica Acta, 2019, 304: 386-395.
[14] KONG C H, SU X Y, QING D, et al. Controlled synthesis of various SrTiO3 morphologies and their effects on photoelectrochemical cathodic protection performance[J]. Ceramics International, 2022, 48(14): 20228-20236.
[15] KONG L N, TANG X X, DU X R, et al. Surface engineering of TiO2@SrTiO3 heterojunction with Ni2S3 for efficient visible-light-driven photoelectrochemical cathodic protection[J]. Journal of Alloys and Compounds, 2022, 927: 166861.
[16] XU J B, DONG X Z, KONG C H, et al. Influence of heat treatment on the photoelectrochemical cathodic protection performance for SrTiO3 films[J]. Russian Journal of Physical Chemistry A, 2022, 96(12): 2774-2782.
[17] ZHANG Q J, JING J P, SUN M M, et al. Enhancement of photoelectrochemical performance of carbon quantum dots doped carbon nitride[J]. Equipment Environmental Engineering, 2018, 15(10): 21-26 (in Chinese).
[18] KONG C H, QING D, SU X Y, et al. Improved photoelectrochemical cathodic protection properties of a flower-like SrTiO3 photoanode decorated with g-C3N4[J]. Journal of Alloys and Compounds, 2022, 924: 166629.
[19] OHKO Y, SAITOH S, TATSUMA T, et al. Photoelectrochemical anticorrosion effect of SrTiO3 for carbon steel[J]. Electrochemical and Solid-State Letters, 2002, 5(2): B9.
[20] ZHANG C, JIA Y Z, JING Y, et al. Effect of non-metal elements (B, C, N, F, P, S) mono-doping as anions on electronic structure of SrTiO3[J]. Computational Materials Science, 2013, 79: 69-74.
[21] KANG H W, BIN PARK S. Doping of fluorine into SrTiO3 by spray pyrolysis for H2 evolution under visible light irradiation[J]. Chemical Engineering Science, 2013, 100: 384-391.
[22] ZHU Y F, XU L, HU J, et al. Fabrication of heterostructured SrTiO3/TiO2 nanotube array films and their use in photocathodic protection of stainless steel[J]. Electrochimica Acta, 2014, 121: 361-368.