[2] JIN E D, YU J K, WEN T P, et al. Fabrication of high-density magnesia using vacuum compaction molding[J]. Ceram Int, 2018, 44(6): 6390-6394.
[4] CHEN L G, LI S L, JONES P T, et al. Identification of magnesia-chromite refractory degradation mechanisms of secondary copper smelter linings[J]. J Eur Ceram Soc, 2016, 36(8): 2119-2132.
[5] CHEN M, LU C Y, YU J K. Improvement in performance of MgO-CaO refractories by addition of nano-sized ZrO2[J]. J Eur Ceram Soc, 2007, 27(16): 4633-4638.
[6] GRUBER D, SISTANINIA M, FASCHING C, et al. Thermal shock resistance of magnesia spinel refractories-investigation with the concept of configurational forces[J]. J Eur Ceram Soc, 2016, 36(16): 4301-4308.
[7] WAGNER C, WENZL C, GREGUREK D, et al. Thermodynamic and experimental investigations of high-temperature refractory corrosion by molten slags[J]. Metall Mater Trans B, 2017, 48: 119-131.
[8] CHEN L G, GUO M X, SHI H Y, et al. Influence of FeO/SiO2 and CaO/SiO2 ratios in iron-saturated ZnO-rich fayalite slags on the corrosion of MgO[J]. J Am Ceram Soc, 2016, 99: 3754-3760.
[10] Ding J, Yuan W J, Li J, et al. Preparation and hydration resistance of MgO-MgAl2O4 composite refractory[J]. Adv Mater Res, 2012, 399-401: 851-854.
[11] HU Z, XU Y B, LI Y W, et al. Role of ZrO2 in sintering and mechanical properties of CaO containing magnesia from cryptocrystalline magnesite[J]. Ceram Int, 2022, 48(5): 6236-6244.
[12] GU Q, LIU G Q, LI H X, et al. Synthesis of MgO-MgAl2O4 refractory aggregates for application in MgO-C slide plate[J]. Ceram Int, 2019, 45(18): 24768-24776.
[15] ZHANG S, SARPOOLAKY H, MARRIOTT N J, et al. Penetration and corrosion of magnesia grain by silicate slags[J]. Br Ceram Trans, 2000, 99(6): 248-255.
[16] MUKAI K, TAO Z, GOTO K, et al. In-situ observation of slag penetration into MgO refractory[J]. Scand J Metall, 2002, 31(1): 68-78.
[17] ZHANG W X, HUANG A, ZOU Y S, et al. Corrosion modeling of magnesia aggregates in contact with CaO-MgO-SiO2 slags[J]. J Am Ceram Soc, 2020, 103(3): 2128-2136.
[18] LEE Y B, Park H C, OH K D, et al. Sintering and microstructure development in the system MgO-TiO2[J]. J Mater Sci, 1998, 33(17): 4321-4325.
[19] LIAO N, Jia D C, Yang Z H, et al. Mechanical properties and thermal shock resistance of Si2BC3N ceramics with ternary Al4SiC4 additive[J]. Ceram Int, 2018, 44(8): 9009-9017.
[20] XU T T, SU Y, SHI T, et al. Improving hydration resistance of MgO-CaO ceramics by in situ synthesized CaZrO3 coatings prepared using a non-hydrolytic sol[J]. Ceram Int, 2021, 47(2): 2165-2171.
[21] WANG Q H, HE G, DENG S X, et al. Wetting behavior and reaction mechanism of molten Si in contact with silica substrate[J]. Ceram Int, 2019, 45(17): 21365-21372.
[22] PASSI M, PAL B. A review on CaTiO3 photocatalyst: Activity enhancement methods and photocatalytic applications[J]. Powder Technol, 2021, 388: 274-304.
[23] GHASEMI-KAHRIZSANGI S, DEHSHEIKH H G, KARAMIAN E, et al. A comparative evaluation of the addition impact of nanometer- sized tetravalent oxides on the performance of doloma-magnesia ceramic refractories[J]. Ceram Int, 2018, 44 (2): 2058-2064.
[24] LUO Y J, GU H Z, ZHANG M J, et al. Research on thermal shock resistance of porous refractory material by strain-life fatigue approach[J]. Ceram Int, 2020, 46(10): 14884-14893.
[25] BUCEVAC D, OMERAEVI M, EGELJA A, et al. Effect of YAG content on creep resistance and mechanical properties of Al2O3-YAG composite[J]. Ceram Int, 2020, 46(10): 15998-16007.
[26] JIANG Y J, GUO R Y, BHALLA A S. Growth and properties of CaTiO3 single crystal fibers[J]. J Electroceram, 1998, 2(3): 199-203.
[27] SZCZERBA J, PEDZICH Z, NIKIEL M, et al. Influence of raw materials morphology on properties of magnesia-spinel refractories[J]. J Eur Ceram Soc, 2007, 27(2-3): 1683-1689.
[30] HAN J S, HEO J H, PARK J H. Interfacial reaction between magnesia refractory and “FeO”-rich slag: Formation of magnesiowüstite layer[J]. Ceram Int, 2019, 45(8): 10481-10491.