• Laser & Optoelectronics Progress
  • Vol. 56, Issue 4, 043002 (2019)
Yuanyuan Song1, Ding Chen2, and Shuang Cong1,*
Author Affiliations
  • 1 Department of Automation, University of Science and Technology of China, Hefei, Anhui 230027, China
  • 2 State Key Laboratory of Space-Ground Integrated Information Technology, Beijing Institute of Satellite Information Engineering, Beijing 100086, China
  • show less
    DOI: 10.3788/LOP56.043002 Cite this Article Set citation alerts
    Yuanyuan Song, Ding Chen, Shuang Cong. Property of Entangled Photon Pairs Generated via Spontaneous Parametric Down Conversion[J]. Laser & Optoelectronics Progress, 2019, 56(4): 043002 Copy Citation Text show less
    References

    [1] Bouwmeester D, Ekert A, Zeilinger A. The physics of quantum information[M]. Berlin, Heidelberg: Springer, 11-28(2000).

    [2] Giovannetti V, Lloyd S. MacCone L. Advances in quantum metrology[J]. Nature Photonics, 5, 222-229(2011).

    [3] D'Angelo M. Kim Y H, Kulik S P, et al. Identifying entanglement using quantum ghost interference and imaging[J]. Physical Review Letters, 92, 233601(2004).

    [4] Burnham D C, Weinberg D L. Observation of simultaneity in parametric production of optical photon pairs[J]. Physical Review Letters, 25, 84-87(1970). http://adsabs.harvard.edu/abs/1970PhRvL..25...84B

    [5] Aspect A, Dalibard J, Roger G. Experimental test of Bell's inequalities using time- varying analyzers[J]. Physical Review Letters, 49, 1804-1807(1982). http://www.ams.org/mathscinet-getitem?mr=687359

    [6] Kwiat P G, Steinberg A M, Chiao R Y. High-visibility interference in a Bell-inequality experiment for energy and time[J]. Physical Review A, 47, R2472-R2475(1993). http://www.ncbi.nlm.nih.gov/pubmed/9909350

    [7] Tapster P R, Rarity J G. Owens P C M. Violation of Bell's Inequality over 4 km of optical fiber[J]. Physical Review Letters, 73, 1923-1926(1994). http://www.ncbi.nlm.nih.gov/pubmed/10056923

    [8] Yin J J, Yu K, Bao J Q. Spontaneous parametric down conversion in type-iBBO crystal pumped by femtosecond pulses[J]. Acta Photonica Sinica, 40, 1376-1380(2011).

    [9] Kim Y H, Grice W P. Generation of pulsed polarization-entangled two-photon state via temporal and spectral engineering[J]. Journal of Modern Optics, 49, 2309-2323(2002). http://www.tandfonline.com/doi/abs/10.1080/0950034021000011455

    [10] Kwiat P G, Mattle K, Weinfurter H et al. New high-intensity source of polarization-entangled photon pairs[J]. Physical Review Letters, 75, 4337-4341(1995). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000075000024004337000001&idtype=cvips&gifs=Yes

    [11] Kwiat P G, Waks E, White A G et al. Ultrabright source of polarization-entangled photons[J]. Physical Review A, 60, R773-R776(1999). http://www.tandfonline.com/servlet/linkout?suffix=CIT0001&dbid=16&doi=10.1080%2F09500340802187332&key=10.1103%2FPhysRevA.60.R773

    [12] Baek S Y, Kim Y H. Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion[J]. Physical Review A, 77, 043807(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000008000004000063000001&idtype=cvips&gifs=Yes

    [13] Lu Z G, Liu H J, Jing F et al. Theoretical analysis of spectral properties of parametric fluorescence via spontaneous parametric down-conversion[J]. Acta Physica Sinica, 58, 4689-4696(2009).

    [14] Shi B S, Tomita A. Generation of a pulsed polarization entangled-photon pair via a two-crystal geometry[J]. Physical Review A, 67, 043804(2003). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.67.043804

    [15] Bouwmeester D. PanJ W, Daniell M, et al. Observation of three-photon Greenberger-Horne-Zeilinger entanglement[J]. Physical Review Letters, 82, 1345-1349(1999).

    [16] Grice W P, Walmsley I A. Spectral information and distinguishability in type-II down-conversion with a broadband pump[J]. Physical Review A, 56, 1627-1634(1997). http://adsabs.harvard.edu/abs/1997PhRvA..56.1627G

    [17] Fedorov V, Efremov A, Volkov A et al. Short-pulse or strong-field breakup processes: a route to study entangled wave packets[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 39, S467-S483(2006). http://adsabs.harvard.edu/abs/2006JPhB...39S.467F

    [18] Valencia A, Ceré A, Shi X J et al. Shaping the waveform of entangled photons[J]. Physical Review Letters, 99, 243601(2007). http://www.ncbi.nlm.nih.gov/pubmed/18233448

    [19] Ou Z Y. Temporal distinguishability of an N-photon state and its characterization by quantum interference[J]. Physical Review A, 74, 063808(2006). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000006000012000026000001&idtype=cvips&gifs=Yes

    [20] Keller T E, Rubin M H. Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse[J]. Physical Review A, 56, 1534-1541(1997). http://adsabs.harvard.edu/abs/1997PhRvA..56.1534K

    [21] Pe ina J, Sergienko A V, Jost B M et al. . Dispersion in femtosecond entangled two-photon interference[J]. Physical Review A, 59, 2359-2368(1999).

    [22] Nasr M B, Di Giuseppe G. Saleh B E A, et al. Generation of high-flux ultra-broadband light by bandwidth amplification in spontaneous parametric down conversion[J]. Optics Communications, 246, 521-528(2005). http://www.sciencedirect.com/science/article/pii/S0030401804011162

    [23] Giovannetti V. MacCone L, Shapiro J H, et al. Extended phase-matching conditions for improved entanglement generation[J]. Physical Review A, 66, 043813(2002).

    [24] Lutz T, Kolenderski P, Jennewein T. A down-conversion source of positively spectrally correlated and decorrelated telecom photon pairs. [C]∥Conference on Lasers and Electro-Optics, June 9-14, 2013, San Jose, California United States. Washington: Optical Society of America., QTh1E, 4(2013).

    Yuanyuan Song, Ding Chen, Shuang Cong. Property of Entangled Photon Pairs Generated via Spontaneous Parametric Down Conversion[J]. Laser & Optoelectronics Progress, 2019, 56(4): 043002
    Download Citation