• Laser & Optoelectronics Progress
  • Vol. 60, Issue 2, 0210001 (2023)
Anjun Zhao1, Xiao Zhao1, Jing Jing2,*, Jiangtao Xi1, and Pufang Cui1
Author Affiliations
  • 1College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
  • 2China Northwest Architecture Design and Research Institute, Xi'an 710018, Shaanxi, China
  • show less
    DOI: 10.3788/LOP212374 Cite this Article Set citation alerts
    Anjun Zhao, Xiao Zhao, Jing Jing, Jiangtao Xi, Pufang Cui. Non-Intrusive Electric Load Identification Algorithm for Optimizing Convolutional Neural Network Hyper-Parameters[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0210001 Copy Citation Text show less
    References

    [1] Batra N, Singh A, Singh P et al. Data driven energy efficiency in buildings[EB/OL]. https://arxiv.org/abs/1404.7227

    [2] Ibrahim M, El-Zaart A, Adams C. Smart sustainable cities roadmap: readiness for transformation towards urban sustainability[J]. Sustainable Cities and Society, 37, 530-540(2018).

    [3] Zheng Z, Chen H N, Luo X W. A supervised event-based non-intrusive load monitoring for non-linear appliances[J]. Sustainability, 10, 1001(2018).

    [4] Lam H Y, Fung G S K, Lee W K. A novel method to construct taxonomy electrical appliances based on load signaturesof[J]. IEEE Transactions on Consumer Electronics, 53, 653-660(2007).

    [5] de Baets L, Develder C, Dhaene T et al. Automated classification of appliances using elliptical Fourier descriptors[C], 153-158(2017).

    [6] Hassan T, Javed F, Arshad N. An empirical investigation of V-I trajectory based load signatures for non-intrusive load monitoring[J]. IEEE Transactions on Smart Grid, 5, 870-878(2014).

    [7] Cheng X, Li L Z, Wu H et al. A survey of the research on non-intrusive load monitoring and disaggregation[J]. Power System Technology, 40, 3108-3117(2016).

    [8] Kelly J, Knottenbelt W. Neural NILM: deep neural networks applied to energy disaggregation[C], 55-64(2015).

    [9] Wang S X, Guo L Y, Chen H W et al. Non-intrusive load identification algorithm based on feature fusion and deep learning[J]. Automation of Electric Power Systems, 44, 103-110(2020).

    [10] Zhang Y T, Deng C Y, Liu Y K et al. Non-intrusive load identification algorithm based on convolution neural network[J]. Power System Technology, 44, 2038-2044(2020).

    [11] Breuel T M. The effects of hyperparameters on SGD training of neural networks[EB/OL]. https://arxiv.org/abs/1508.02788

    [12] Du L, He D W, Harley R G et al. Electric load classification by binary voltage-current trajectory mapping[J]. IEEE Transactions on Smart Grid, 7, 358-365(2016).

    [13] Alpaydin E. Neural networks and deep learning[M]. Machine learning: the new AI, 85-109(2016).

    [14] Gao J K, Kara E C, Giri S et al. A feasibility study of automated plug-load identification from high-frequency measurements[C], 220-224(2015).

    [15] Zhang C Z, Li Y, Kang B L et al. Blurred license plate character recognition algorithm based on deep learning[J]. Laser & Optoelectronics Progress, 58, 1610012(2021).

    [16] Song X Y, Jin L T, Zhao Y et al. Plant image recognition with complex background based on effective region screening[J]. Laser & Optoelectronics Progress, 57, 041016(2020).

    [17] Liu F, Li M J, Hu J W et al. Expression recognition based on low pixel face images[J]. Laser & Optoelectronics Progress, 57, 101008(2020).

    [18] Russakovsky O, Deng J, Su H et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 115, 211-252(2015).

    [19] Dumoulin V, Visin F. A Guide to convolution arithmetic for deep learning[EB/OL]. https://arxiv.org/abs/1603.07285

    [20] Li C M, Yang S X, Yang Y et al. Hyperspectral remote sensing image classification based on maximum overlap pooling convolutional neural network[J]. Sensors, 18, 3587(2018).

    [21] Kennedy J, Eberhart R. Particle swarm optimization[C], 1942-1948(2011).

    [22] Gao J K, Giri S, Kara E C et al. PLAID: a public dataset of high-resoultion electrical appliance measurements for load identification research: demo abstract[C], 198-199(2014).

    [23] Kahl M, Haq A U, Kriechbaumer T. Whited-a worldwide household and industry transient energy data set[EB/OL]. http://nilmworkshop.org/2016/proceedings/Poster_ID18.pdf

    Anjun Zhao, Xiao Zhao, Jing Jing, Jiangtao Xi, Pufang Cui. Non-Intrusive Electric Load Identification Algorithm for Optimizing Convolutional Neural Network Hyper-Parameters[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0210001
    Download Citation