• Laser & Optoelectronics Progress
  • Vol. 61, Issue 9, 0932001 (2024)
Jiamei Li1,2, Dawei Li1,**, Tao Wang3, Hui Yu1,2..., Guang Xu1, Li Wang1 and Xingqiang Lu1,*|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201800, China
  • show less
    DOI: 10.3788/LOP223079 Cite this Article Set citation alerts
    Jiamei Li, Dawei Li, Tao Wang, Hui Yu, Guang Xu, Li Wang, Xingqiang Lu. Influence of Chromatic Aberration of Large Aperture Lens on Focusing Spatiotemporal Characteristics in Multi-Pass Nd∶Glass Petawatt Laser[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0932001 Copy Citation Text show less
    References

    [1] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).

    [2] Matousek P, Ross I N, Collier J L et al. Multi-petawatt optical parametric chirped pulse amplification (OPCPA)[C], 51(2002).

    [3] Danson C N, Haefner C, Bromage J et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 7, e54(2019).

    [4] Yang X H, Ren C, Xu H et al. Transport of ultraintense laser-driven relativistic electrons in dielectric targets[J]. High Power Laser Science and Engineering, 8, 2(2020).

    [5] Zhu X M, Prasad R, Swantusch M et al. Relativistic electron acceleration by surface plasma waves excited with high intensity laser pulses[J]. High Power Laser Science and Engineering, 8, 15(2020).

    [6] Kitagawa Y, Fujita H, Kodama R et al. Petawatt laser for fast ignitor and laser matter interaction research[C](2001).

    [7] Heebner J E, Acree R L, Jr, Alessi D A et al. Injection laser system for Advanced Radiographic Capability using chirped pulse amplification on the National Ignition Facility[J]. Applied Optics, 58, 8501-8510(2019).

    [8] Zhang J, Wang W M, Yang X H et al. Double-cone ignition scheme for inertial confinement fusion[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 378, 20200015(2020).

    [9] Bor Z. Distortion of femtosecond laser pulses in lenses and lens systems[J]. Journal of Modern Optics, 35, 1907-1918(1988).

    [10] Bor Z. Distortion of femtosecond laser pulses in lenses[J]. Optics Letters, 14, 119-121(1989).

    [11] Kempe M, Stamm U, Wilhelmi B et al. Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems[J]. Journal of the Optical Society of America B, 9, 1158-1165(1992).

    [12] Fuchs U, Zeitner U, Tünnermann A. Ultra-short pulse propagation in complex optical systems[J]. Optics Express, 13, 3852-3861(2005).

    [13] Coïc H, Airiau J P, Blanchot N et al. Modeling of the petawatt PETAL laser chain using Miró code[J]. Applied Optics, 56, 9491-9501(2017).

    [14] Heuck H M, Neumayer P, Kühl T et al. Chromatic aberration in petawatt-class lasers[J]. Applied Physics B, 84, 421-428(2006).

    [15] Zhu P, Xie X L, Kang J et al. Systematic study of spatiotemporal influences on temporal contrast in the focal region in large-aperture broadband ultrashort petawatt lasers[J]. High Power Laser Science and Engineering, 6, e8(2018).

    [16] Yu H, Li J M, Li D W et al. Potential continuous zooming scheme based on high-power broadband laser[J]. Optik, 258, 168652(2022).

    [17] Néauport J, Blanchot N, Rouyer C et al. Chromatism compensation of the PETAL multipetawatt high-energy laser[J]. Applied Optics, 46, 1568-1574(2007).

    [18] Blanchot N, Behar G, Berthier T et al. Overview of PETAL, the multi-Petawatt project on the LIL facility[J]. Plasma Physics and Controlled Fusion, 50, 124045(2008).

    [19] Williams W H, Crane J K, Alessi D A et al. Spatio-temporal focal spot characterization and modeling of the NIF ARC kilojoule picosecond laser[J]. Applied Optics, 60, 2288-2303(2021).

    [20] Li D W, Wang T, Yin X L et al. Design of third-order dispersion compensation for the SG PW laser system using a birefringent crystal[J]. Applied Sciences, 12, 4078-4090(2022).

    [21] Manes K R, Simmons W W. Statistical optics applied to high-power glass lasers[J]. Journal of the Optical Society of America A, 2, 528-538(1985).

    [22] Zhu J Q, Zhu J, Li X C et al. Status and development of high-power laser facilities at the NLHPLP[J]. High Power Laser Science and Engineering, 6, e55(2018).

    [23] Li D W, Wang T, Yin X L et al. Accurate model and performance analysis of broadband pulsed amplification in picosecond petawatt laser system[J]. Acta Physica Sinica, 70, 104202(2021).

    [24] Cui Z R, Kang J, Xie X L et al. Compensation for chromatic aberration in femtosecond petawatt laser systems based on zoom image transfer[J]. Chinese Journal of Lasers, 46, 0905001(2019).

    [25] Raffestin D, Lecherbourg L, Lantuéjoul I et al. Enhanced ion acceleration using the high-energy petawatt PETAL laser[J]. Matter and Radiation at Extremes, 6, 056901(2021).

    [26] Ohland J B, Eisenbarth U, Zielbauer B et al. Ultra-compact post-compressor on-shot wavefront measurement for beam correction at PHELIX[J]. High Power Laser Science and Engineering, 10, e18(2022).

    Jiamei Li, Dawei Li, Tao Wang, Hui Yu, Guang Xu, Li Wang, Xingqiang Lu. Influence of Chromatic Aberration of Large Aperture Lens on Focusing Spatiotemporal Characteristics in Multi-Pass Nd∶Glass Petawatt Laser[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0932001
    Download Citation