• Electro-Optic Technology Application
  • Vol. 37, Issue 5, 51 (2022)
LIU Hedong1, LI Xiaobo2, and HU Haofeng1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    LIU Hedong, LI Xiaobo, HU Haofeng. Research Progress of Polarization Image Denoising Technology (Invited)[J]. Electro-Optic Technology Application, 2022, 37(5): 51 Copy Citation Text show less
    References

    [1] CARNICER A, JAVIDI B. Polarimetric 3D integral imaging in photon-starved conditions[J]. Optics Express, 2015, 23(5):6408-6417.

    [2] HAGEN N, MU T K, OTANI Y. Stokes polarimeter performance:general noise model and analysis[J]. Applied Optics, 2018, 57(24):6998-6998.

    [3] LIANG J, ZHANG W F, REN L Y, et al. Polarimetric dehazing method for visibility improvement based on visible and infrared image fusion[J]. Applied Optics, 2016, 55(29):8221-8226.

    [4] TANG C H. Noise reduction method of adaptive Wiener filtering for ocean remote sensing image[J]. Journal of Coastal Research, 2018:651-655.

    [5] KUMLU D, ERER I. Multiscale directional bilateral filter based clutter removal in Gpr image analysis[C]//2017 IEEE International Geoscience and Remote Sensing Symposium (Igarss), 2017:2345-2348.

    [6] KNAUS C, ZWICKER M. Dual-domain image denoising[C]//IEEE International Conference on Image Processing, 2014.

    [7] SENDUR L, SELESNICK I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency[J]. Ieee Transactions on Signal Processing, 2002, 50 (11):2744-2756.

    [8] YE W B, LI S T, ZHAO X J, et al. A K times singular value decomposition based image denoising algorithm for DoFP polarization image sensors with Gaussian noise[J]. IEEE Sensors Journal, 2018, 18(15):6138-6144.

    [9] BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising[J]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings, 2005(2):60-65.

    [10] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8):2080-2095.

    [11] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.

    [12] ISOGAWA K, IDA T, SHIODEAR T, et al. Deep shrinkage convolutional neural network for adaptive noise reduction[J]. IEEE Signal Processing Letters, 2018, 25(2):224-228.

    [13] ZHANG K, ZUO W M, ZHANG L. FFDNet:toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9):4608-4622.

    [14] LI X B, LI H Y, LIN Y, et al. Learning-based denoising for polarimetric images[J]. Optics Express, 2020, 28(11):16309-16321.

    [15] WEN S J, ZHENG Y Q, LU F, et al. Convolutional demosaicing network for joint chromatic and polarimetric imagery[J]. Optics Letters, 2019, 44(22):5646-5649.

    [16] ZHANG J C, LUO H B, LIANG R G, et al. PCA-based denoising method for division of focal plane polarimeters[J]. Optics Express, 2017, 25(3):2391-2400.

    [17] ZHANG J C, LUO H B, HUI B, et al. Non-uniformity correction for division of focal plane polarimeters with a calibration method[J]. Applied Optics, 2016, 55(26):7236-7240.

    [18] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12):4655-4666.

    [19] LIANG J A, GUO Y F, LIU B. BM3D-based denoising method for color polarization filter array[J]. Optics Express, 2022, 30(12):22107-22122.

    [20] DABOV K, FOI A, KATKOVNIK V, et al. Color image denoising via sparse 3d collaborative filtering with grouping constraint in luminance-chrominance space[J]. 2007 IEEE International Conference on Image Processing, 2007(1-7):313-316.

    [21] TIBBS A B, DALY I M, ROBERTS N W, et al. Denoising imaging polarimetry by adapted BM3D method[J]. Journal of the Optical Society of America a-Optics Image Science and Vision, 2018, 35(4):690-701.

    [22] ZHAO Y Q, PAN Q, ZHANG H C. New polarization imaging method based on spatially adaptive wavelet image fusion[J]. Optical Engineering, 2006, 45(12):123202-1-

    [23] FAISAN S, HEINRICH C, ROUSSEAU F, et al. Joint filtering estimation of Stokes vector images based on a nonlocal means approach[J]. Journal of the Optical Society of America a-Optics Image Science and Vision, 2012, 29(9):2028-2037.

    [24] HU H F, ZHAO L, HUANG B J, et al. Enhancing visibility of polarimetric underwater image by transmittance correction[J]. IEEE Photonics Journal, 2017, 9(3):1-10.

    [25] LECUN Y, BENGIO Y, HINTON G. Deep learning[J].Nature, 2015, 521(7553):436-444.

    [26] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[J]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (Cvpr), 2015:1-9.

    [27] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (Cvpr), 2016:770-778.

    [28] HUANG G, LIU Z, MAATEN V D L, et al. Densely connected convolutional networks[C]//30th IEEE Conference on Computer Vision and Pattern Recognition (Cvpr 2017), 2017:2261-2269.

    [29] ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(7):2480-2495.

    [30] GLOROT X,BORDES A,BENIOG Y. Deep sparse rectifier neural networks[C]//Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 2011: 315-323.

    [31] HU H F, LIN Y, LI X B, et al. IPLNet:a neural network for intensity-polarization imaging in low light[J]. Optics Letters, 2020, 45(22):6162-6165.

    [32] CHEN C, CHEN Q F, XU J, et al. Learning to see in the dark[J]. 2018 IEEE/Cvf Conference on Computer Vision and Pattern Recognition (Cvpr), 2018:3291-3300.

    [33] BG A, AD B, SA A, et al. Image denoising review:from classical to state-of-the-art approaches[J]. Information Fusion, 2020(55):220-244.

    [34] ANWAR S, BARNES N. Real image denoising with feature attention[C]//2019 IEEE/Cvf International Conference on Computer Vision (Iccv 2019), 2019:3155-3164.

    [35] TIAN C W, XU Y, LI Z Y, et al. Attention-guided CNN for image denoising[J]. Neural Networks, 2020(124):117-129.

    [36] WANG F,JIANG M, QIAN C,et al. Residual attention network for image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:3156-3164.

    [37] WOO S H, PARK J,LEE J Y, et al. CBAM:convolutional block attention module[J]. Computer Vision-Eccv 2018, Pt Vii, 2018(11211):3-19.

    [38] LIU H D, ZHANG Y Z, CHENG Z Z, et al. Attention-based neural network for polarimetric image denoising[J]. Optics Letters, 2022, 47(11):2726-2729.

    [39] JI S, XU W, YANG M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis&Machine Intelligence, 2013, 35(1):221-231.

    [40] HU J,SHEN L,SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141.

    [41] JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[J]. Computer Vision-Eccv 2016, Pt Ii, 2016(9906):694-711.

    [42] AWAN M J,MASOOD O A,MOHAMMED M A, et al. Image-based malware classification using VGG19 network and spatial convolutional attention[J]. Electronics, 2021,10(19):2444.