• Advanced Fiber Materials
  • Vol. 6, Issue 2, 00377 (2024)
Shuangjiang Feng1, Lei Yao2, Mingxin Feng1, Haoran Cai1..., Xu He1, Man He1,*, Xiaohai Bu1,3 and Yuming Zhou1,**|Show fewer author(s)
Author Affiliations
  • 1Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211100 Jiangsu, China
  • 2School of Physics, Southeast University, Nanjing, 212013 Jiangsu, China
  • 3School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167 Jiangsu, China
  • show less
    DOI: 10.1007/s42765-024-00377-w Cite this Article
    Shuangjiang Feng, Lei Yao, Mingxin Feng, Haoran Cai, Xu He, Man He, Xiaohai Bu, Yuming Zhou. Regeneration of Pea-Pod-Like Cellulose Acetate Fibers as Aerogel-Derived Boards for Building Thermal Regulation and Carbon Reduction[J]. Advanced Fiber Materials, 2024, 6(2): 00377 Copy Citation Text show less
    References

    [1] Li T, Zhai Y, He S, Gan W, Wei Z, Heidarinejad M, et al. A radiative cooling structural material. Science. 2019;364(6442):760–3.

    [2] Sheng S-Z, Wang J-L, Zhao B, He Z, Feng X-F, Shang Q-G, et al. Nanowire-based smart windows combining electro- and thermochromics for dynamic regulation of solar radiation. Nat Commun. 2023;14(1):3231.

    [3] Song J, Zhang W, Sun Z, Pan M, Tian F, Li X, et al. Durable radiative cooling against environmental aging. Nat Commun. 2022;13(1):4805.

    [4] Feng C, Yang P, Liu H, Mao M, Liu Y, Xue T, et al. Bilayer porous polymer for efficient passive building cooling. Nano Energy. 2021;85: 105971.

    [5] Mandal J, Yang Y, Yu N, Raman AP. Paints as a scalable and effective radiative cooling technology for buildings. Joule. 2020;4(7):1350–6.

    [6] Zou H, Wang C, Yu J, Huang D, Yang R, Wang R. Solar spectrum management and radiative cooling film for sustainable greenhouse production in hot climates. Sci Bull. 2023;68(14):1493–6.

    [7] Zhu W, Zhang Y, Mohammad N, Xu W, Tunc S, Shan X, et al. Large-scale industry-compatible sub-ambient radiative cooling pulp. Cell Rep Phys Sci. 2022;3(11): 101125.

    [8] Zhu H, Wang Y, Qu M, Pan Y, Zheng G, Dai K, et al. Electrospun poly(vinyl alcohol)/silica film for radiative cooling. Adv Compos Hybrid Mater. 2022;5(3):1966–75.

    [9] Shi M, Song Z, Ni J, Du X, Cao Y, Yang Y, et al. Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano. 2023;17(3):2029–38.

    [10] Li X, Sheng X, Fang Y, Hu X, Gong S, Sheng M, et al. Wearable Janus-type film with integrated all-season active/passive thermal management, thermal camouflage, and ultra-high electromagnetic shielding efficiency tunable by origami process. Adv Funct Mater. 2023;33(18):2212776.

    [11] Dai B, Li X, Xu T, Zhang X. Radiative cooling and solar heating Janus films for personal thermal management. ACS Appl Mater Interfaces. 2022;14(16):18877–83.

    [12] Li S, Xiao P, Yang W, Zhang C, Gu J, Kuo S-W, et al. Hierarchically nanostructured Janus membranes toward sustainable and efficient solar-to-thermal management. Adv Funct Mater. 2023;33(18):2209654.

    [13] Cai J, Du M, Li Z. Flexible temperature sensors constructed with fiber materials. Adv Mater Technol. 2022;7(7):2101182.

    [14] Zhu M, Li J, Yu J, Li Z, Ding B. Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew Chem Int Ed. 2022;61(22): e202200226.

    [15] Zhu M, Yu J, Li Z, Ding B. Self-healing fibrous membranes. Angew Chem Int Ed. 2022;61(41): e202208949.

    [16] Liu L, Shan X, Hu X, Lv W, Wang J. Superhydrophobic silica aerogels and their layer-by-layer structure for thermal management in harsh cold and hot environments. ACS Nano. 2021;15(12):19771–82.

    [17] Hu P, Wang J, Zhang P, Wu F, Cheng Y, Wang J, et al. Hyperelastic Kevlar nanofiber aerogels as robust thermal switches for smart thermal management. Adv Mater. 2023;35(3):2207638.

    [18] Guan Q, Raza A, Mao SS, Vega LF, Zhang T. Machine learning-enabled inverse design of radiative cooling film with on-demand transmissive color. ACS Photonics. 2023;10(3):715–26.

    [19] Zhou L, Song H, Liang J, Singer M, Zhou M, Stegenburgs E, et al. A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat Sustain. 2019;2(8):718–24.

    [20] Hossain MM, Jia B, Gu M. A metamaterial emitter for highly efficient radiative cooling. Adv Opt Mater. 2015;3(8):1047–51.

    [21] Cheng N, Miao D, Wang C, Lin Y, Babar AA, Wang X, et al. Nanosphere-structured hierarchically porous PVDF-HFP fabric for passive daytime radiative cooling via one-step water vapor-induced phase separation. Chem Eng J. 2023;460: 141581.

    [22] Zhang Y, Wang T, Mei X, Chen M, Wu L. Ordered porous polymer films for highly efficient passive daytime radiative cooling. ACS Photonics. 2023;10(9):3124–32.

    [23] Zhu W, Droguet B, Shen Q, Zhang Y, Parton TG, Shan X, et al. Structurally colored radiative cooling cellulosic films. Adv Sci. 2022;9(26):2202061.

    [24] Ma Z, Xue T, Wali Q, Miao Y-E, Fan W, Liu T. Direct ink writing of polyimide/bacterial cellulose composite aerogel for thermal insulation. Compos Commun. 2023;39: 101528.

    [25] Cai C, Wei Z, Ding C, Sun B, Chen W, Gerhard C, et al. Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building. Nano Lett. 2022;22(10):4106–14.

    [26] Cai S, Xu C, Jiang D, Yuan M, Zhang Q, Li Z, Wang Y. Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy. 2022;93: 106904.

    [27] Li J, Cai J, Yu J, Li Z, Ding B. The rising of fiber constructed piezo/triboelectric nanogenerators: from material selections, fabrication techniques to emerging applications. Adv Funct Mater. 2023;33(44):2303249.

    [28] Lv X, Liu Y, Yu J, Li Z, Ding B. Smart fibers for self-powered electronic skins. Adv Fiber Mater. 2022;5(2):401–28.

    [29] Xu D, Ge C, Chen Z, Liu Y, Chen T, Gao C, et al. Tree-inspired braiding fibrous frameworks enabling high-efficiency and salt-rejecting solar evaporation. J Mater Chem A. 2023;11(25):13510–8.

    [30] Zhou H, Xu J, Liu X, Zhang H, Wang D, Chen Z, et al. Bio-inspired photonic materials: prototypes and structural effect designs for applications in solar energy manipulation. Adv Funct Mater. 2018;28(24):1705309.

    [31] Cheng Z, Han H, Wang F, Yan Y, Shi X, Liang H, et al. Efficient radiative cooling coating with biomimetic human skin wrinkle structure. Nano Energy. 2021;89: 106377.

    [32] Jeong SY, Tso CY, Wong YM, Chao CYH, Huang B. Daytime passive radiative cooling by ultra emissive bio-inspired polymeric surface. Sol Energy Mater Sol Cells. 2020;206: 110296.

    [33] Wang S, Wang Y, Zou Y, Chen G, Ouyang J, Jia D, et al. Biologically inspired scalable-manufactured dual-layer coating with a hierarchical micropattern for highly efficient passive radiative cooling and robust superhydrophobicity. ACS Appl Mater Interfaces. 2021;13(18):21888–97.

    [34] Cai C, Chen W, Wei Z, Ding C, Sun B, Gerhard C, et al. Bioinspired “aerogel grating” with metasurfaces for durable daytime radiative cooling for year-round energy savings. Nano Energy. 2023;114: 108625.

    [35] Choe A, Yeom J, Kwon Y, Lee Y, Shin Y-E, Kim J, et al. Stimuli-responsive micro/nanoporous hairy skin for adaptive thermal insulation and infrared camouflage. Mater Horiz. 2020;7(12):3258–65.

    [36] Yue X, He M, Zhang T, Yang D, Qiu F. Laminated fibrous membrane inspired by polar bear pelt for outdoor personal radiation management. ACS Appl Mater Interfaces. 2020;12(10):12285–93.

    Shuangjiang Feng, Lei Yao, Mingxin Feng, Haoran Cai, Xu He, Man He, Xiaohai Bu, Yuming Zhou. Regeneration of Pea-Pod-Like Cellulose Acetate Fibers as Aerogel-Derived Boards for Building Thermal Regulation and Carbon Reduction[J]. Advanced Fiber Materials, 2024, 6(2): 00377
    Download Citation