[1] Saleh BEA, Teich MC. Fundamentals of photonics. 2nd ed. Hoboken (NJ): John Wiley & Sons Inc; 2007.
[2] Boyd RW. Nonlinear optics. 3rd ed. Burlington (MA): Elsevier Inc.; 2008.
[4] Rego L, Dorney KM, Brooks NJ, Nguyen QL, Lioa C-T, Roman JS, Couch DE, Liu A, Pisanty E, Lewenstein M, et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science. 2019;364(6447):eaaw9486.
[5] Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett. 2000;85(18):3966–3969.
[6] Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, Gaburro Z. Light propagation with phase discontinuities generalized Laws of reflection and refraction. Science. 2011;334(6054):333–337.
[8] Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater. 2012;11(11):426–431.
[9] Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater. 2014;13(2):139–150.
[10] Khorasaninejad M, Capasso F. Metalenses: Versatile multifunctional photonic components. Science. 2017;358(6367):eaam8100.
[11] Jeong HD, Kim H, Lee SY. Review of metasurfaces with extraordinary flat optic functionalities. Curr Opt Photonics. 2024;8:16–29.
[12] Li L, Yuan Q, Chen R, Zou X, Zang W, Li T, Zheng G, Wang S, Wang Z, Zhu S. Chromatic dispersion manipulation based on metasurface devices in the mid-infrared region. Chin Opt Lett. 2020;18: Article 082401.
[13] Wang S, Wu PC, Su VC, Lai YC, Hung Chu C, Chen JW, Lu SH, Chen J, Xu B, Kuan CH, et al. Broadband achromatic optical metasurface devices. Nat Commun. 2017;8(1):187.
[15] Zou X, Zheng G, Yuan Q, Zang W, Chen R, Li T, Li L, Wang S, Wang Z, Zhu S. Imaging based on metalenses. PhotoniX. 2020;1:2.
[17] Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F. Metalenses at visible wavelengths diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352(6290):1190–1194.
[18] Khorasaninejad M, Zhu AY, Roques-Carmes C, Chen WT, Oh J, Mishra I, Devlin RC, Capasso F. Polarization-insensitive Metalenses at visible wavelengths. Nano Lett. 2016;16(1):7229–7234.
[19] Wang X, Hao H, He X, Xie P, Liu J, Tan J, Li H, Wang H, Genevet P, Luo Y, et al. Advances in information processing and biological imaging using flat optics. Nat Rev Electr Eng. 2024;1(6):2.
[20] Liu W, Wan Y, Yu H, Yuan Q, Li T, Xue F, Wang S. Miniature snapshot mid-infrared spectrometer based on metal-insulator-metal metasurface. J Opt. 2024;26(8): Article 085003.
[23] Neshev DN, Miroshnichenko AE. Enabling smart vision with metasurfaces. Nat Photonics. 2022;17(1):26–35.
[24] Li S, Li X, Zhang L, Wang G, Zhang L, Liu M, Zeng C, Wang L, Sun Q, Zhao W, et al. Efficient optical angular momentum manipulation for compact multiplexing and demultiplexing using a dielectric metasurface. Adv Opt Mater. 2020;8:1901666.
[25] Cao M, Xie Z, Zhong Y, Lei T, Zhang W, Liu S, Yuan X. Cylindrical vector beams demultiplexing communication based on a vectorial diffractive optical element. Nano. 2023;12:1753–1762.
[26] Hu J, Guo Z, Shi J, Jiang X, Chen Q, Chen H, He Z, Song Q, Xiao S, Yu S, et al. A metasurface-based full-color circular auto-focusing airy beam transmitter for stable high-speed underwater wireless optical communications. Nat Commun. 2024;15(1):2944.
[31] Qin H, Shi Y, Su Z, Wei G, Wang Z, Cheng X, Liu AQ, Genevet P, Song Q. Exploiting extraordinary topological optical forces at bound states in the continuum. Sci Adv. 2022;8(49):eade7556.
[33] Jha PK, Shitrit N, Kim J, Ren X, Wang Y, Zhang X. Metasurface-mediated quantum entanglement. ACS Photonics. 2017;5:971–976.
[34] Bao Y, Lin Q, Su R, Zhou Z-K, Song J, Li J, Wang X-H. On-demand spin-state manipulation of single-photon emission from quantum dot integrated with metasurface. Sci Adv. 2020;6(31):eaba8761.
[35] Li L, Liu Z, Ren X, Wang S, Su VC, Chen MK, Chu CH, Kuo HY, Liu B, Zang W, et al. Metalens-array–based high-dimensional and multiphoton quantum source. Science. 2020;368(6498):1487–1490.
[37] Ossiander M, Meretska ML, Hampel HK, Lim SWD, Knefz N, Jauk T, Capasso F, Schultze M. Extreme ultraviolet metalens by vacuum guiding. Science. 2023;380(6640):59–63.
[39] Li T. Spin-selective trifunctional metasurfaces for deforming versatile nondiffractive beams along the optical trajectory. Laser Photonics Rev. 2024; Article 2301372.
[40] Li T, Li X, Yan S, Xu X, Wang S, Yao B, Wang Z, Zhu S. Generation and conversion dynamics of dual Bessel beams with a photonic spin-dependent dielectric metasurface. Phys Rev Appl. 2021;15: Article 014059.
[42] Shaltout AM, Shalaev VM, Brongersma ML. Spatiotemporal light control with active metasurfaces. Science. 2019;364(6441):eaat3100.
[43] He Q, Sun S, Zhou L. Tunable/reconfigurable metasurfaces: Physics and applications. Research. 2019;2019:1849272.
[44] Badloe T, Lee J, Seong J, Rho J. Tunable metasurfaces: The path to fully active nanophotonics. Adv Photonics Res. 2021;2:2000205.
[48] Balthasar Mueller JP, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett. 2017;118(11):113901.
[50] Bao Y, Ni J, Qiu CW. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv Mater. 2020;32(6): Article e1905659.
[51] Bao Y, Wen L, Chen Q, Qiu C-W, Li B. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface. Sci Adv. 2021;7(25):eabh0365.
[53] Yang Z, Huang PS, Lin YT, Qin H, Zúñiga-Pérez J, Shi Y, Wang Z, Cheng X, Tang MC, Han S, et al. Creating pairs of exceptional points for arbitrary polarization control: Asymmetric vectorial wavefront modulation. Nat Commun. 2024;15(1):232.
[54] Fu P, du S, Lan W, Hu L, Wu Y, Li Z, Huang X, Guo Y, Zhu W, Li J, et al. Deep learning enabled topological design of exceptional points for multi-optical-parameter control. Commun Phys. 2023;6:254.
[56] Song Q, Odeh M, Zuniga-Perez J, Kante B, Genevet P. Plasmonic topological metasurface by encircling an exceptional point. Science. 2021;373(6559):1133–1137.
[57] Xu X, Nieto-Vesperinas M, Zhou Y, Zhang Y, Li M, Rodríguez-Fortuño FJ, Yan S, Yao B. Gradient and curl optical torques. Nat Commun. 2024;15(1):6230.
[58] Hu Y, Kingsley-Smith JJ, Nikkhou M, Sabin JA, Rodríguez-Fortuño FJ, Xu X, Millen J. Structured transverse orbital angular momentum probed by a levitated optomechanical sensor. Nat Commun. 2023;14(1):2638.
[59] Nan F, Rodríguez-Fortuño FJ, Yan S, Kingsley-Smith JJ, Ng J, Yao B, Yan Z, Xu X. Creating tunable lateral optical forces through multipolar interplay in single nanowires. Nat Commun. 2023;14(1):6361.
[60] Zhou Y, Xu X, Zhang Y, Li M, Yan S, Nieto-Vesperinas M, Li B, Qiu CW, Yao B. Observation of high-order imaginary Poynting momentum optomechanics in structured light. Proc Natl Acad Sci USA. 2022;119(44): Article e2209721119.
[61] Nieto-Vesperinas M, Xu X. The complex Maxwell stress tensor theorem: The imaginary stress tensor and the reactive strength of orbital momentum, A novel scenery underlying electromagnetic optical forces. Light Sci Appli. 2022;11(44):297.
[63] Zhen B, Hsu CW, Lu L, Stone AD, Soljacic M. Topological nature of optical bound states in the continuum. Phys Rev Lett. 2014;113(25):257401.
[66] Chen R, Bi Q, Li T, Wang S, Zhu S, Wang Z. Dual-wavelength chiral metasurfaces based on quasi-bound states in the continuum. J Opt. 2023;25: Article 045001.
[67] Hsu CW, Zhen B, Lee J, Chua SL, Johnson SG, Joannopoulos JD, Soljačić M. Observation of trapped light within the radiation continuum. Nature. 2013;499(7457):188–191.
[68] Overvig AC, Malek SC, Yu N. Multifunctional nonlocal metasurfaces. Phys Rev Lett. 2020;125(1): Article 017402.
[69] Zhang Y, Li T, Wang S, Wang Z, Zhu S. Polarization-dependent optical forces arising from Fano interference. Adv Phys Res. 2023;2:2200048.
[72] Gong SH, Alpeggiani F, Sciacca B, Garnett EC, Kuipers L. Nanoscale chiral valley-photon interface through optical spin-orbit coupling. Science. 2018;359(6374):443–447.
[73] van de Groep J, Song JH, Celano U, Li Q, Kik PG, Brongersma ML. Exciton resonance tuning of an atomically thin lens. Nat Photonics. 2020;14:426–430.
[76] Duan X, Wang B, Rong K, Liu CL, Gorovoy V, Mukherjee S, Kleiner V, Koren E, Hasman E. Valley-addressable monolayer lasing through spin-controlled Berry phase photonic cavities. Science. 2023;381(6665):1429–1432.
[79] Slobodeniuk AO. Ultrafast valley-selective coherent optical manipulation with excitons in WSe2 and MoS2 monolayers. npj 2D Mater Appl. 2023;7:17.
[80] Hong X, Hu G, Zhao W, Wang K, Sun S, Zhu R, Wu J, Liu W, Loh KP, Wee ATS, et al. Structuring nonlinear wavefront emitted from monolayer transition-metal dichalcogenides. Research. 2020;2020:9085782.
[82] Li P, Dolado I, Alfaro-Mozaz FJ, Casanova F, Hueso LE, Liu S, Edgar JH, Nikitin AY, Vélez S, Hillenbrand R. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science. 2018;359(6378):892–896.
[83] Li P, Hu G, Dolado I, Tymchenko M, Qiu CW, Alfaro-Mozaz FJ, Casanova F, Hueso LE, Liu S, Edgar JH, et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nat Commun. 2020;11(1):3663.
[87] Weber T, Kühner L, Sortino L, Ben Mhenni A, Wilson NP, Kühne J, Finley JJ, Maier SA, Tittl A. Intrinsic strong light-matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces. Nat Mater. 2023;22(8):970–976.
[88] Wu T, Wang C, Hu G, Wang Z, Zhao J, Wang Z, Chaykun K, Liu L, Chen M, Li D, et al. Ultrastrong exciton-plasmon couplings in WS2 multilayers synthesized with a random multi-singular metasurface at room temperature. Nat Commun. 2024;15(1):3295.
[89] Lee B, Park J, Han GH, Ee HS, Naylor CH, Liu W, Johnson ATC, Agarwal R. Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with Plasmonic Nanoantenna array. Nano Lett. 2015;15(5):3646–3653.
[90] Rana N, Dixit G. All-optical ultrafast valley switching in two-dimensional materials. Phys Rev Appl. 2023;19: Article 034056.
[91] Dibos AM, Zhou Y, Jauregui LA, Scuri G, Wild DS, High AA, Taniguchi T, Watanabe K, Lukin MD, Kim P, et al. Electrically tunable exciton-plasmon coupling in a WSe(2) monolayer embedded in a plasmonic crystal cavity. Nano Lett. 2019;19(6):3543–3547.
[92] Huang C, Zhang C, Xiao S, Wang Y, Fan Y, Liu Y, Zhang N, Qu G, Ji H, Han J, et al. Ultrafast control of vortex microlasers. Science. 2020;367(6481):1018–1021.
[93] Li Z, Smalley JST, Haroldson R, Lin D, Hawkins R, Gharajeh A, Moon J, Hou J, Zhang C, Hu W, et al. Active perovskite hyperbolic metasurface. ACS Photonics. 2020;7(1):1754–1761.
[94] Folland TG, Fali A, White ST, Matson JR, Liu S, Aghamiri NA, Edgar JH, Haglund RF Jr, Abate Y, Caldwell JD. Reconfigurable infrared hyperbolic metasurfaces using phase change materials. Nat Commun. 2018;9(1):4371.
[95] Kumar A, Solanki A, Manjappa M, Ramesh S, Srivastava YK, Agarwal P, Sum TC, Sigh R. Excitons in 2D perovskites for ultrafast terahertz photonic devices. Sci Adv. 2020;6(8):eaax8821.
[96] Chen Y, Feng J, Huang Y, Chen W, Su R, Ghosh S, Hou Y, Xiong Q, Qiu CW. Compact spin-valley-locked perovskite emission. Nat Mater. 2023;22(9):1065–1070.
[98] Shaltout AM, Lagoudakis KG, van de Groep J, Kim SJ, Vučković J, Shalaev VM, Brongersma ML. Spatiotemporal light control with frequency-gradient metasurfaces. Science. 2019;365(6451):374–377.
[99] Jia W, Gao C, Zhao Y, Li L, Wen S, Wang S, Bao C, Jiang C, Yang C, Yang Y. Intracavity spatiotemporal metasurfaces. Adv Photonics. 2023;5: Article 026002.
[100] Divitt S, Zhu W, Zhang C, Lezec HJ, Agrawal A. Ultrafast optical pulse shaping using dielectric metasurfaces. Science. 2019;364(6443):890–894.
[101] Chen L, Huo P, Song J, Wang Z, Xu T, Zhu W, Agrawal A. Shaping polarization within an ultrafast laser pulse using dielectric metasurfaces. Optica. 2023;10:25–32.
[103] Zhang X, Liu Y, Han J, Kivshar Y, Song Q. Chiral emission from resonant metasurfaces. Science. 2022;377(6611):1215–1218.
[105] Zheng C, Li J, Liu J, Li J, Yue Z, Li H, Yang F, Zhang Y, Zhang Y, Yao J. Creating longitudinally varying vector vortex beams with an all-dielectric metasurface. Laser Photonics Rev. 2022;16:2200236.
[107] Lou J, Jiao Y, Yang R, Huang Y, Xu X, Zhang L, Ma Z, Yu Y, Peng W, Yuan Y, et al. Calibration-free, high-precision, and robust terahertz ultrafast metasurfaces for monitoring gastric cancers. Proc Natl Acad Sci USA. 2022;119(43): Article e2209218119.
[108] Tunesi J, Peters L, Totero Gongora JS, Olivieri L, Fratalocchi A, Pasquazi A, Peccianti M. Terahertz emission mediated by ultrafast time-varying metasurfaces. Phys Rev Res. 2021;3: Article L042006.
[110] Duan S, Su X, Qiu H, Jiang Y, Wu J, Fan K, Zhang C, Jia X, Zhu G, Kang L, et al. Linear and phase controllable terahertz frequency conversion via ultrafast breaking the bond of a meta-molecule. Nat Commun. 2024;15(1):1119.
[112] Benea-Chelmus I-C, Mason S, Meretska ML, Elder DL, Kazakov D, Shams-Ansari A, Dalton LR, Capasso F. Gigahertz free-space electro-optic modulators based on Mie resonances. Nat Commun. 2022;13(1):3170.
[114] Li J, Yu P, Zhang S, Liu N. Electrically-controlled digital metasurface device for light projection displays. Nat Commun. 2020;11(1):3574.
[115] Gao B, Ren M, Wu W, Cai W, Xu J. Electro-optic lithium niobate metasurfaces. Sci China Phys Mech Astron. 2021;64: Article 240362.
[116] Zhong H, Zheng Y, Sun J, Wang Z, Wu R, Zhang LE, Liang Y, Hua Q, Ning M, Ji J, et al. Gigahertz-rate-switchable wavefront shaping through integration of metasurfaces with photonic integrated circuit. Adv Photonics. 2024;6: Article 016005.
[117] Zhang J, Kosugi Y, Otomo A, Ho YL, Delaunay JJ, Nakano Y, Tanemura T. Electrical tuning of metal-insulator-metal metasurface with electro-optic polymer. Appl Phys Lett. 2018;113:231102.
[118] Karvounis A, Vogler-Neuling VV, Richter FU, Dénervaud E, Timofeeva M, Grange R. Electro-optic metasurfaces based on barium titanate nanoparticle films. Adv Optic Mater. 2020;8:2000623.
[119] Feng H, Ge T, Guo X, Wang B, Zhang Y, Chen Z, Zhu S, Zhang K, Sun W, Huang C, et al. Integrated lithium niobate microwave photonic processing engine. Nature. 2024;627(8002):80–87.
[120] Benea-Chelmus I-C, Meretska ML, Elder DL, Tamagnone M, Dalton LR, Capasso F. Electro-optic spatial light modulator from an engineered organic layer. Nat Commun. 2021;12(1):5928.
[121] Zheng T, Gu Y, Kwon H, Roberts G, Faraon A. Dynamic light manipulation via silicon-organic slot metasurfaces. Nat Commun. 2024;15(1):1557.
[124] Park J, Kang J-H, Kim SJ, Liu X, Brongersma ML. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett. 2016;17(1):407–413.
[127] Park J, Jeong BG, Kim SI, Lee D, Kim J, Shin C, Lee CB, Otsuka T, Kyoung J, Kim S, et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat Nanotechnol. 2020;16(1):69–76.
[131] Kim T-T, Oh SS, Kim HD, Park HS, Hess O, Min B, Zhang S. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Sci Adv. 2017;3(9): Article e1701377.
[133] Komar A, Paniagua-Domínguez R, Miroshnichenko A, Yu YF, Kivshar YS, Kuznetsov AI, Neshev D. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photonics. 2018;1742–1748.
[134] Badloe T, Kim I, Kim Y, Kim J, Rho J. Electrically tunable bifocal Metalens with diffraction-limited focusing and imaging at visible wavelengths. Adv Sci. 2021;8(21):2102646.
[136] Li S-Q, Xu X, Maruthiyodan Veetil R, Valuckas V, Paniagua-Domínguez R, Kuznetsov AI. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science. 2019;364(6445):1087–1090.
[138] Wu PC, Pala RA, Kafaie Shirmanesh G, Cheng WH, Sokhoyan R, Grajower M, Alam MZ, Lee D, Atwater HA. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat Commun. 2019;10(1):3654.
[139] Holsteen AL, Cihan AF, Brongersma ML. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science. 2019;365(6450):257–260.
[140] Belotelov VI, Akimov IA, Pohl M, Kotov VA, Kasture S, Vengurlekar AS, Gopal AV, Yakovlev DR, Zvezdin AK, Bayer M. Enhanced magneto-optical effects in magnetoplasmonic crystals. Nat Nanotechnol. 2011;6(6):370–376.
[141] Belotelov VI, Kreilkamp LE, Akimov IA, Kalish AN, Bykov DA, Kasture S, Yallapragada VJ, Venu Gopal A, Grishin AM, Khartsev SI, et al. Plasmon-mediated magneto-optical transparency. Nat Commun. 2013;4:2128.
[143] Zubritskaya I, Maccaferri N, Inchausti Ezeiza X, Vavassori P, Dmitriev A. Magnetic control of the chiroptical plasmonic surfaces. Nano Lett. 2017;18(1):302–307.
[146] Padilla WJ, Taylor AJ, Highstrete C, Lee M, Averitt RD. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev Lett. 2006;96(10):107401.
[148] Shcherbakov MR, Liu S, Zubyuk VV, Vaskin A, Vabishchevich PP, Keeler G, Pertsch T, Dolgova TV, Staude I, Brener I, et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat Commun. 2017;8(1):17.
[154] Duan X, Kamin S, Liu N. Dynamic plasmonic colour display. Nat Commun. 2017;8:14606.
[155] Kaissner R, Li J, Lu W, Li X, Neubrech F, Wang J, Liu N. Electrochemically controlled metasurfaces with high-contrast switching at visible frequencies. Sci Adv. 2021;7(19):eabd9450.
[158] Li J, Kamin S, Zheng G, Neubrech F, Zhang S, Liu N. Addressable metasurfaces for dynamic holography and optical information encryption. Sci Adv. 2018;4(6):eaar6768.
[159] Thyagarajan K, Sokhoyan R, Zornberg L, Atwater HA. Millivolt modulation of plasmonic metasurface optical response via ionic conductance. Adv Mater. 2017;29(31):1701044.
[161] Kang L, Cui Y, Lan S, Rodrigues SP, Brongersma ML, Cai W. Electrifying photonic metamaterials for tunable nonlinear optics. Nat Commun. 2014;5:4680.
[164] Wang H, Hu Z, Deng J, Zhang X, Chen J, Li K, Li G. All-optical ultrafast polarization switching with nonlinear plasmonic metasurfaces. Sci Adv. 2024;10(8):eadk3882.
[165] McDonnell C, Deng J, Sideris S, Ellenbogen T, Li G. Functional THz emitters based on Pancharatnam-Berry phase nonlinear metasurfaces. Nat Commun. 2021;12(1):30.
[166] Sharma M, Tal M, McDonnell C, Ellenbogen T. Electrically and all-optically switchable nonlocal nonlinear metasurfaces. Sci Adv. 2023;9(33):eadh2353.
[168] Yang J, Gurung S, Bej S, Ni P, Howard Lee HW. Active optical metasurfaces: Comprehensive review on physics, mechanisms, and prospective applications. Rep Prog Phys. 2022;85(3): Article 036101.
[169] Cui T, Bai B, Sun HB. Tunable metasurfaces based on active materials. Adv Funct Mater. 2019;29:1806692.
[170] Jeong YG, Bahk YM, Kim DS. Dynamic terahertz plasmonics enabled by phase-change materials. Adv Optic Mater. 2019;8:1900548.
[171] Chandra S, Franklin D, Cozart J, Safaei A, Chanda D. Adaptive multispectral infrared camouflage. ACS Photonics. 2018;5:4513–4519.
[178] Tonkaev P, Sinev IS, Rybin MV, Makarov SV, Kivshar Y. Multifunctional and transformative metaphotonics with emerging materials. Chem Rev. 2022;122(199):15414–15449.
[180] Ma J, Kang T, Ke Z, Yao M, Ma X, Luo Q, Bi L, Qin J. Tunable far-infrared polarization imaging based on VO2 metasurfaces. Adv Optic Mater. 2023;12:2302390.
[181] Long L, Taylor S, Wang L. Enhanced infrared emission by thermally switching the excitation of magnetic polariton with scalable microstructured VO2 metasurfaces. ACS Photonics. 2020;7:2219–2227.
[182] King J, Wan C, Park TJ, Deshpande S, Zhang Z, Ramanathan S, Kats MA. Electrically tunable VO2–metal metasurface for mid-infrared switching, limiting and nonlinear isolation. Nat Photonics. 2023;18:74–80.
[186] Joushaghani A, Jeong J, Paradis S, Alain D, Stewart Aitchison J, Poon JKS. Electronic and thermal effects in the insulator-metal phase transition in VO2 nano-gap junctions. Appl Phys Lett. 2014;105:231904.
[187] Joushaghani A, Jeong J, Paradis S, Alain D, Stewart Aitchison J, Poon JKS. Voltage-controlled switching and thermal effects in VO2 nano-gap junctions. Appl Phys Lett. 2014;104:221904.
[189] Cotrufo M, Sulejman SB, Wesemann L, Rahman MA, Bhaskaran M, Roberts A, Alù A. Reconfigurable image processing metasurfaces with phase-change materials. Nat Commun. 2024;15(1):4483.
[191] Tian J, Luo H, Yang Y, Ding F, Qu Y, Zhao D, Qiu M, Bozhevolnyi SI. Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5. Nat Commun. 2019;10(1):396.
[196] Sha X, An S, Zhang Y, Yang F, Su P, Liberman V, Chou JB, Roberts CM, Kang M, Rios C, et al. Chirality tuning and reversing with resonant phase-change metasurfaces. Sci Adv. 2024;10(1):eadn9017.
[197] Atikian HA, Sinclair N, Latawiec P, Xiong X, Meesala S, Gauthier S, Wintz D, Randi J, Bernot D, DeFrances S, et al. Diamond mirrors for high-power continuous-wave lasers. Nat Commun. 2022;13(1):2610.