• Ultrafast Science
  • Vol. 4, Issue 1, 0074 (2024)
Tianyue Li1,2,†, Haotian Xu1,2,†, Mingcheng Panmai3,†, Tianhua Shao1,2..., Geze Gao1,2, Fei Xu1,2, Guangwei Hu3,*, Shuming Wang1,2,4,*, Zhenlin Wang1,2,* and Shining Zhu1,2,4,*|Show fewer author(s)
Author Affiliations
  • 1National Laboratory of Solid-State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
  • 2Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.
  • 3School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
  • 4Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education, Nanjing 210093, China.
  • show less
    DOI: 10.34133/ultrafastscience.0074 Cite this Article
    Tianyue Li, Haotian Xu, Mingcheng Panmai, Tianhua Shao, Geze Gao, Fei Xu, Guangwei Hu, Shuming Wang, Zhenlin Wang, Shining Zhu. Ultrafast Metaphotonics[J]. Ultrafast Science, 2024, 4(1): 0074 Copy Citation Text show less
    References

    [1] Saleh BEA, Teich MC. Fundamentals of photonics. 2nd ed. Hoboken (NJ): John Wiley & Sons Inc; 2007.

    [2] Boyd RW. Nonlinear optics. 3rd ed. Burlington (MA): Elsevier Inc.; 2008.

    [3] Midorikawa K. Progress on table-top isolated attosecond light sources. Nat Photonics. 2022;16:267–278.

    [4] Rego L, Dorney KM, Brooks NJ, Nguyen QL, Lioa C-T, Roman JS, Couch DE, Liu A, Pisanty E, Lewenstein M, et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science. 2019;364(6447):eaaw9486.

    [5] Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett. 2000;85(18):3966–3969.

    [6] Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, Gaburro Z. Light propagation with phase discontinuities generalized Laws of reflection and refraction. Science. 2011;334(6054):333–337.

    [7] Chen X, Huang L, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Qiu CW, Zhang S, Zentgraf T. Dual-polarity plasmonic metalens for visible light. Nat Commun. 2012;3:1198.

    [8] Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater. 2012;11(11):426–431.

    [9] Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater. 2014;13(2):139–150.

    [10] Khorasaninejad M, Capasso F. Metalenses: Versatile multifunctional photonic components. Science. 2017;358(6367):eaam8100.

    [11] Jeong HD, Kim H, Lee SY. Review of metasurfaces with extraordinary flat optic functionalities. Curr Opt Photonics. 2024;8:16–29.

    [12] Li L, Yuan Q, Chen R, Zou X, Zang W, Li T, Zheng G, Wang S, Wang Z, Zhu S. Chromatic dispersion manipulation based on metasurface devices in the mid-infrared region. Chin Opt Lett. 2020;18: Article 082401.

    [13] Wang S, Wu PC, Su VC, Lai YC, Hung Chu C, Chen JW, Lu SH, Chen J, Xu B, Kuan CH, et al. Broadband achromatic optical metasurface devices. Nat Commun. 2017;8(1):187.

    [14] Wang S, Wu PC, Su VC, Lai YC, Chen MK, Kuo HY, Chen BH, Chen YH, Huang TT, Wang JH, et al. A broadband achromatic metalens in the visible. Nat Nanotechnol. 2018;13(3):227–232.

    [15] Zou X, Zheng G, Yuan Q, Zang W, Chen R, Li T, Li L, Wang S, Wang Z, Zhu S. Imaging based on metalenses. PhotoniX. 2020;1:2.

    [16] Cheng Q, Ma M, Yu D, Shen Z, Xie J, Wang J, Xu N, Guo H, Hu W, Wang S, et al. Broadband achromatic metalens in terahertz regime. Sci Bull (Beijing). 2019;64(20):1525–1531.

    [17] Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F. Metalenses at visible wavelengths diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352(6290):1190–1194.

    [18] Khorasaninejad M, Zhu AY, Roques-Carmes C, Chen WT, Oh J, Mishra I, Devlin RC, Capasso F. Polarization-insensitive Metalenses at visible wavelengths. Nano Lett. 2016;16(1):7229–7234.

    [19] Wang X, Hao H, He X, Xie P, Liu J, Tan J, Li H, Wang H, Genevet P, Luo Y, et al. Advances in information processing and biological imaging using flat optics. Nat Rev Electr Eng. 2024;1(6):2.

    [20] Liu W, Wan Y, Yu H, Yuan Q, Li T, Xue F, Wang S. Miniature snapshot mid-infrared spectrometer based on metal-insulator-metal metasurface. J Opt. 2024;26(8): Article 085003.

    [21] Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol. 2015;10(4):308–312.

    [22] Zhao R, Sain B, Wei Q, Tang C, Li X, Weiss T, Huang L, Wang Y, Zentgraf T. Multichannel vectorial holographic display and encryption. Light Sci Appl. 2018;7:95.

    [23] Neshev DN, Miroshnichenko AE. Enabling smart vision with metasurfaces. Nat Photonics. 2022;17(1):26–35.

    [24] Li S, Li X, Zhang L, Wang G, Zhang L, Liu M, Zeng C, Wang L, Sun Q, Zhao W, et al. Efficient optical angular momentum manipulation for compact multiplexing and demultiplexing using a dielectric metasurface. Adv Opt Mater. 2020;8:1901666.

    [25] Cao M, Xie Z, Zhong Y, Lei T, Zhang W, Liu S, Yuan X. Cylindrical vector beams demultiplexing communication based on a vectorial diffractive optical element. Nano. 2023;12:1753–1762.

    [26] Hu J, Guo Z, Shi J, Jiang X, Chen Q, Chen H, He Z, Song Q, Xiao S, Yu S, et al. A metasurface-based full-color circular auto-focusing airy beam transmitter for stable high-speed underwater wireless optical communications. Nat Commun. 2024;15(1):2944.

    [27] Andren D, Baranov DG, Jones S, Volpe G, Verre R, Kall M. Microscopic metavehicles powered and steered by embedded optical metasurfaces. Nat Nanotechnol. 2021;16(9):970–974.

    [28] Li X, Zhou Y, Ge S, Wang G, Li S, Liu Z, Li X, Zhao W, Yao B, Zhang W. Experimental demonstration of optical trapping and manipulation with multifunctional metasurface. Opt Lett. 2022;47(4):977–980.

    [29] Li T, Kingsley-Smith JJ, Hu Y, Xu X, Yan S, Wang S, Yao B, Wang Z, Zhu S. Reversible lateral optical force on phase-gradient metasurfaces for full control of metavehicles. Opt Lett. 2023;48(2):255–258.

    [30] Li T, Xu X, Fu B, Wang S, Li B, Wang Z, Zhu S. Integrating the optical tweezers and spanner onto an individual single-layer metasurface. Photonics Res. 2021;9:1062–1068.

    [31] Qin H, Shi Y, Su Z, Wei G, Wang Z, Cheng X, Liu AQ, Genevet P, Song Q. Exploiting extraordinary topological optical forces at bound states in the continuum. Sci Adv. 2022;8(49):eade7556.

    [32] Wang SM, Cheng QQ, Gong YX, Xu P, Sun C, Li L, Li T, Zhu SN. A 14 x 14 mum(2) footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide. Nat Commun. 2016;7:11490.

    [33] Jha PK, Shitrit N, Kim J, Ren X, Wang Y, Zhang X. Metasurface-mediated quantum entanglement. ACS Photonics. 2017;5:971–976.

    [34] Bao Y, Lin Q, Su R, Zhou Z-K, Song J, Li J, Wang X-H. On-demand spin-state manipulation of single-photon emission from quantum dot integrated with metasurface. Sci Adv. 2020;6(31):eaba8761.

    [35] Li L, Liu Z, Ren X, Wang S, Su VC, Chen MK, Chu CH, Kuo HY, Liu B, Zang W, et al. Metalens-array–based high-dimensional and multiphoton quantum source. Science. 2020;368(6498):1487–1490.

    [36] Solntsev AS, Agarwal GS, Kivshar YS. Metasurfaces for quantum photonics. Nat Photonics. 2021;15:327–336.

    [37] Ossiander M, Meretska ML, Hampel HK, Lim SWD, Knefz N, Jauk T, Capasso F, Schultze M. Extreme ultraviolet metalens by vacuum guiding. Science. 2023;380(6640):59–63.

    [38] Zdagkas A, McDonnell C, Deng J, Shen Y, Li G, Ellenbogen T, Papasimakis N, Zheludev NI. Observation of toroidal pulses of light. Nat Photonics. 2022;16:523–528.

    [39] Li T. Spin-selective trifunctional metasurfaces for deforming versatile nondiffractive beams along the optical trajectory. Laser Photonics Rev. 2024; Article 2301372.

    [40] Li T, Li X, Yan S, Xu X, Wang S, Yao B, Wang Z, Zhu S. Generation and conversion dynamics of dual Bessel beams with a photonic spin-dependent dielectric metasurface. Phys Rev Appl. 2021;15: Article 014059.

    [41] Mikheeva E, Kyrou C, Bentata F, Khadir S, Cueff S, Genevet P. Space and time modulations of light with metasurfaces: Recent progress and future prospects. ACS Photonics. 2022;9:1458–1482.

    [42] Shaltout AM, Shalaev VM, Brongersma ML. Spatiotemporal light control with active metasurfaces. Science. 2019;364(6441):eaat3100.

    [43] He Q, Sun S, Zhou L. Tunable/reconfigurable metasurfaces: Physics and applications. Research. 2019;2019:1849272.

    [44] Badloe T, Lee J, Seong J, Rho J. Tunable metasurfaces: The path to fully active nanophotonics. Adv Photonics Res. 2021;2:2000205.

    [45] Huang L, Chen X, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 2012;12(11):5750–5755.

    [46] Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol. 2015;10(11):937–943.

    [47] Ren J, Li T, Fu B, Wang S, Wang Z, Zhu S. Wavelength-dependent multifunctional metalens devices via genetic optimization. Opt Mater Express. 2021;11:3908–3916.

    [48] Balthasar Mueller JP, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett. 2017;118(11):113901.

    [49] Fu B, Li T, Zou X, Ren J, Yuan Q, Wang S, Cao X, Wang Z, Zhu S. Steerable chromatic dispersive metalenses in dual bands. J Phys D Appl Phys. 2022;55:255105.

    [50] Bao Y, Ni J, Qiu CW. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv Mater. 2020;32(6): Article e1905659.

    [51] Bao Y, Wen L, Chen Q, Qiu C-W, Li B. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface. Sci Adv. 2021;7(25):eabh0365.

    [52] Deng ZL, Deng J, Zhuang X, Wang S, Li K, Wang Y, Chi Y, Ye X, Xu J, Wang GP, et al. Diatomic metasurface for vectorial holography. Nano Lett. 2018;18(5):2885–2892.

    [53] Yang Z, Huang PS, Lin YT, Qin H, Zúñiga-Pérez J, Shi Y, Wang Z, Cheng X, Tang MC, Han S, et al. Creating pairs of exceptional points for arbitrary polarization control: Asymmetric vectorial wavefront modulation. Nat Commun. 2024;15(1):232.

    [54] Fu P, du S, Lan W, Hu L, Wu Y, Li Z, Huang X, Guo Y, Zhu W, Li J, et al. Deep learning enabled topological design of exceptional points for multi-optical-parameter control. Commun Phys. 2023;6:254.

    [55] Yang Z, Huang PS, Lin YT, Qin H, Chen J, Han S, Huang W, Deng ZL, Li B, Zúñiga-Pérez J, et al. Asymmetric full-color Vectorial meta-holograms empowered by pairs of exceptional points. Nano Lett. 2024;24(3):844–851.

    [56] Song Q, Odeh M, Zuniga-Perez J, Kante B, Genevet P. Plasmonic topological metasurface by encircling an exceptional point. Science. 2021;373(6559):1133–1137.

    [57] Xu X, Nieto-Vesperinas M, Zhou Y, Zhang Y, Li M, Rodríguez-Fortuño FJ, Yan S, Yao B. Gradient and curl optical torques. Nat Commun. 2024;15(1):6230.

    [58] Hu Y, Kingsley-Smith JJ, Nikkhou M, Sabin JA, Rodríguez-Fortuño FJ, Xu X, Millen J. Structured transverse orbital angular momentum probed by a levitated optomechanical sensor. Nat Commun. 2023;14(1):2638.

    [59] Nan F, Rodríguez-Fortuño FJ, Yan S, Kingsley-Smith JJ, Ng J, Yao B, Yan Z, Xu X. Creating tunable lateral optical forces through multipolar interplay in single nanowires. Nat Commun. 2023;14(1):6361.

    [60] Zhou Y, Xu X, Zhang Y, Li M, Yan S, Nieto-Vesperinas M, Li B, Qiu CW, Yao B. Observation of high-order imaginary Poynting momentum optomechanics in structured light. Proc Natl Acad Sci USA. 2022;119(44): Article e2209721119.

    [61] Nieto-Vesperinas M, Xu X. The complex Maxwell stress tensor theorem: The imaginary stress tensor and the reactive strength of orbital momentum, A novel scenery underlying electromagnetic optical forces. Light Sci Appli. 2022;11(44):297.

    [62] Yin X, Jin J, Soljacic M, Peng C, Zhen B. Observation of topologically enabled unidirectional guided resonances. Nature. 2020;580(7804):467–471.

    [63] Zhen B, Hsu CW, Lu L, Stone AD, Soljacic M. Topological nature of optical bound states in the continuum. Phys Rev Lett. 2014;113(25):257401.

    [64] Bi Q, Chen R, Ye X, Peng Y, Wang S, Wang Z. Chiral quasi bound states in the continuum for augmented reality. Opt Express. 2024;32(9):16103–16144.

    [65] Chen R, Li T, Bi Q, Wang S, Zhu S, Wang Z. Quasi-bound states in the continuum-based switchable light-field manipulator. Opt Mater Express. 2022;12:1232–1241.

    [66] Chen R, Bi Q, Li T, Wang S, Zhu S, Wang Z. Dual-wavelength chiral metasurfaces based on quasi-bound states in the continuum. J Opt. 2023;25: Article 045001.

    [67] Hsu CW, Zhen B, Lee J, Chua SL, Johnson SG, Joannopoulos JD, Soljačić M. Observation of trapped light within the radiation continuum. Nature. 2013;499(7457):188–191.

    [68] Overvig AC, Malek SC, Yu N. Multifunctional nonlocal metasurfaces. Phys Rev Lett. 2020;125(1): Article 017402.

    [69] Zhang Y, Li T, Wang S, Wang Z, Zhu S. Polarization-dependent optical forces arising from Fano interference. Adv Phys Res. 2023;2:2200048.

    [70] Chen Y, Deng H, Sha X, Chen W, Wang R, Chen YH, Wu D, Chu J, Kivshar YS, Xiao S, et al. Observation of intrinsic chiral bound states in the continuum. Nature. 2023;613(7944):474–478.

    [71] Sun L, Wang CY, Krasnok A, Choi J, Shi J, Gomez-Diaz JS, Zepeda A, Gwo S, Shih CK, Alù A, et al. Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array. Nat Photonics. 2019;13:180–184.

    [72] Gong SH, Alpeggiani F, Sciacca B, Garnett EC, Kuipers L. Nanoscale chiral valley-photon interface through optical spin-orbit coupling. Science. 2018;359(6374):443–447.

    [73] van de Groep J, Song JH, Celano U, Li Q, Kik PG, Brongersma ML. Exciton resonance tuning of an atomically thin lens. Nat Photonics. 2020;14:426–430.

    [74] Chen Y, Qian S, Wang K, Xing X, Wee A, Loh KP, Wang B, Wu D, Chu J, Alu A, et al. Chirality-dependent unidirectional routing of WS(2) valley photons in a nanocircuit. Nat Nanotechnol. 2022;17(11):1178–1182.

    [75] Rong K, Duan X, Wang B, Reichenberg D, Cohen A, Liu CL, Mohapatra PK, Patsha A, Gorovoy V, Mukherjee S, et al. Spin-valley Rashba monolayer laser. Nat Mater. 2023;22(9):1085–1093.

    [76] Duan X, Wang B, Rong K, Liu CL, Gorovoy V, Mukherjee S, Kleiner V, Koren E, Hasman E. Valley-addressable monolayer lasing through spin-controlled Berry phase photonic cavities. Science. 2023;381(6665):1429–1432.

    [77] Hu G, Hong X, Wang K, Wu J, Xu HX, Zhao W, Liu W, Zhang S, Garcia-Vidal F, Wang B, et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nat Photonics. 2019;13:467–472.

    [78] Rong K, Wang B, Reuven A, Maguid E, Cohn B, Kleiner V, Katznelson S, Koren E, Hasman E. Photonic Rashba effect from quantum emitters mediated by a Berry-phase defective photonic crystal. Nat Nanotechnol. 2020;15(11):927–933.

    [79] Slobodeniuk AO. Ultrafast valley-selective coherent optical manipulation with excitons in WSe2 and MoS2 monolayers. npj 2D Mater Appl. 2023;7:17.

    [80] Hong X, Hu G, Zhao W, Wang K, Sun S, Zhu R, Wu J, Liu W, Loh KP, Wee ATS, et al. Structuring nonlinear wavefront emitted from monolayer transition-metal dichalcogenides. Research. 2020;2020:9085782.

    [81] Zhang Q, Hu G, Ma W, Li P, Krasnok A, Hillenbrand R, Alù A, Qiu CW. Interface nano-optics with van der Waals polaritons. Nature. 2021;597(7875):187–195.

    [82] Li P, Dolado I, Alfaro-Mozaz FJ, Casanova F, Hueso LE, Liu S, Edgar JH, Nikitin AY, Vélez S, Hillenbrand R. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science. 2018;359(6378):892–896.

    [83] Li P, Hu G, Dolado I, Tymchenko M, Qiu CW, Alfaro-Mozaz FJ, Casanova F, Hueso LE, Liu S, Edgar JH, et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nat Commun. 2020;11(1):3663.

    [84] Hu G, Krasnok A, Mazor Y, Qiu CW, Alu A. Moire hyperbolic metasurfaces. Nano Lett. 2020;20(5):3217–3224.

    [85] Hu G, Ou Q, Si G, Wu Y, Wu J, Dai Z, Krasnok A, Mazor Y, Zhang Q, Bao Q, et al. Topological polaritons and photonic magic angles in twisted alpha-MoO(3) bilayers. Nature. 2020;582(7811):209–213.

    [86] Zhang Q, Dong S, Cao G, Hu G. Exciton polaritons in mixed-dimensional transition metal dichalcogenides heterostructures. Opt Lett. 2020;45(15):4140–4143.

    [87] Weber T, Kühner L, Sortino L, Ben Mhenni A, Wilson NP, Kühne J, Finley JJ, Maier SA, Tittl A. Intrinsic strong light-matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces. Nat Mater. 2023;22(8):970–976.

    [88] Wu T, Wang C, Hu G, Wang Z, Zhao J, Wang Z, Chaykun K, Liu L, Chen M, Li D, et al. Ultrastrong exciton-plasmon couplings in WS2 multilayers synthesized with a random multi-singular metasurface at room temperature. Nat Commun. 2024;15(1):3295.

    [89] Lee B, Park J, Han GH, Ee HS, Naylor CH, Liu W, Johnson ATC, Agarwal R. Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with Plasmonic Nanoantenna array. Nano Lett. 2015;15(5):3646–3653.

    [90] Rana N, Dixit G. All-optical ultrafast valley switching in two-dimensional materials. Phys Rev Appl. 2023;19: Article 034056.

    [91] Dibos AM, Zhou Y, Jauregui LA, Scuri G, Wild DS, High AA, Taniguchi T, Watanabe K, Lukin MD, Kim P, et al. Electrically tunable exciton-plasmon coupling in a WSe(2) monolayer embedded in a plasmonic crystal cavity. Nano Lett. 2019;19(6):3543–3547.

    [92] Huang C, Zhang C, Xiao S, Wang Y, Fan Y, Liu Y, Zhang N, Qu G, Ji H, Han J, et al. Ultrafast control of vortex microlasers. Science. 2020;367(6481):1018–1021.

    [93] Li Z, Smalley JST, Haroldson R, Lin D, Hawkins R, Gharajeh A, Moon J, Hou J, Zhang C, Hu W, et al. Active perovskite hyperbolic metasurface. ACS Photonics. 2020;7(1):1754–1761.

    [94] Folland TG, Fali A, White ST, Matson JR, Liu S, Aghamiri NA, Edgar JH, Haglund RF Jr, Abate Y, Caldwell JD. Reconfigurable infrared hyperbolic metasurfaces using phase change materials. Nat Commun. 2018;9(1):4371.

    [95] Kumar A, Solanki A, Manjappa M, Ramesh S, Srivastava YK, Agarwal P, Sum TC, Sigh R. Excitons in 2D perovskites for ultrafast terahertz photonic devices. Sci Adv. 2020;6(8):eaax8821.

    [96] Chen Y, Feng J, Huang Y, Chen W, Su R, Ghosh S, Hou Y, Xiong Q, Qiu CW. Compact spin-valley-locked perovskite emission. Nat Mater. 2023;22(9):1065–1070.

    [97] Peng C, Ou K, Li G, Zhao Z, Li X, Liu C, Li X, Chen X, Lu W. Tunable and polarization-sensitive perfect absorber with a phase-gradient heterojunction metasurface in the mid-infrared. Opt Express. 2021;29(9):12893–12902.

    [98] Shaltout AM, Lagoudakis KG, van de Groep J, Kim SJ, Vučković J, Shalaev VM, Brongersma ML. Spatiotemporal light control with frequency-gradient metasurfaces. Science. 2019;365(6451):374–377.

    [99] Jia W, Gao C, Zhao Y, Li L, Wen S, Wang S, Bao C, Jiang C, Yang C, Yang Y. Intracavity spatiotemporal metasurfaces. Adv Photonics. 2023;5: Article 026002.

    [100] Divitt S, Zhu W, Zhang C, Lezec HJ, Agrawal A. Ultrafast optical pulse shaping using dielectric metasurfaces. Science. 2019;364(6443):890–894.

    [101] Chen L, Huo P, Song J, Wang Z, Xu T, Zhu W, Agrawal A. Shaping polarization within an ultrafast laser pulse using dielectric metasurfaces. Optica. 2023;10:25–32.

    [102] Geromel R, Georgi P, Protte M, Lei S, Bartley T, Huang L, Zentgraf T. Compact metasurface-based optical pulse-shaping device. Nano Lett. 2023;23(8):3196–3201.

    [103] Zhang X, Liu Y, Han J, Kivshar Y, Song Q. Chiral emission from resonant metasurfaces. Science. 2022;377(6611):1215–1218.

    [104] Di Francescantonio A, Zilli A, Rocco D, Vinel V, Coudrat L, Conti F, Biagioni P, Duo L, Lemaitre A, de Angelis C, et al. All-optical free-space routing of upconverted light by metasurfaces via nonlinear interferometry. Nat Nanotechnol. 2024;19(3):298–305.

    [105] Zheng C, Li J, Liu J, Li J, Yue Z, Li H, Yang F, Zhang Y, Zhang Y, Yao J. Creating longitudinally varying vector vortex beams with an all-dielectric metasurface. Laser Photonics Rev. 2022;16:2200236.

    [106] Cong L, Srivastava YK, Zhang H, Zhang X, Han J, Singh R. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light Sci Appl. 2018;7:28.

    [107] Lou J, Jiao Y, Yang R, Huang Y, Xu X, Zhang L, Ma Z, Yu Y, Peng W, Yuan Y, et al. Calibration-free, high-precision, and robust terahertz ultrafast metasurfaces for monitoring gastric cancers. Proc Natl Acad Sci USA. 2022;119(43): Article e2209218119.

    [108] Tunesi J, Peters L, Totero Gongora JS, Olivieri L, Fratalocchi A, Pasquazi A, Peccianti M. Terahertz emission mediated by ultrafast time-varying metasurfaces. Phys Rev Res. 2021;3: Article L042006.

    [109] Chen X, Fan W, Song C. Multiple plasmonic resonance excitations on graphene metamaterials for ultrasensitive terahertz sensing. Carbon. 2018;133:416–422.

    [110] Duan S, Su X, Qiu H, Jiang Y, Wu J, Fan K, Zhang C, Jia X, Zhu G, Kang L, et al. Linear and phase controllable terahertz frequency conversion via ultrafast breaking the bond of a meta-molecule. Nat Commun. 2024;15(1):1119.

    [111] Lee K, Son J, Park J, Kang B, Jeon W, Rotermund F, Min B. Linear frequency conversion via sudden merging of meta-atoms in time-variant metasurfaces. Nat Photonics. 2018;12:765–773.

    [112] Benea-Chelmus I-C, Mason S, Meretska ML, Elder DL, Kazakov D, Shams-Ansari A, Dalton LR, Capasso F. Gigahertz free-space electro-optic modulators based on Mie resonances. Nat Commun. 2022;13(1):3170.

    [113] Weigand H, Vogler-Neuling VV, Escalé MR, Pohl D, Richter FU, Karvounis A, Timpu F, Grange R. Enhanced electro-optic modulation in resonant metasurfaces of lithium niobate. ACS Photonics. 2021;8:3004–3009.

    [114] Li J, Yu P, Zhang S, Liu N. Electrically-controlled digital metasurface device for light projection displays. Nat Commun. 2020;11(1):3574.

    [115] Gao B, Ren M, Wu W, Cai W, Xu J. Electro-optic lithium niobate metasurfaces. Sci China Phys Mech Astron. 2021;64: Article 240362.

    [116] Zhong H, Zheng Y, Sun J, Wang Z, Wu R, Zhang LE, Liang Y, Hua Q, Ning M, Ji J, et al. Gigahertz-rate-switchable wavefront shaping through integration of metasurfaces with photonic integrated circuit. Adv Photonics. 2024;6: Article 016005.

    [117] Zhang J, Kosugi Y, Otomo A, Ho YL, Delaunay JJ, Nakano Y, Tanemura T. Electrical tuning of metal-insulator-metal metasurface with electro-optic polymer. Appl Phys Lett. 2018;113:231102.

    [118] Karvounis A, Vogler-Neuling VV, Richter FU, Dénervaud E, Timofeeva M, Grange R. Electro-optic metasurfaces based on barium titanate nanoparticle films. Adv Optic Mater. 2020;8:2000623.

    [119] Feng H, Ge T, Guo X, Wang B, Zhang Y, Chen Z, Zhu S, Zhang K, Sun W, Huang C, et al. Integrated lithium niobate microwave photonic processing engine. Nature. 2024;627(8002):80–87.

    [120] Benea-Chelmus I-C, Meretska ML, Elder DL, Tamagnone M, Dalton LR, Capasso F. Electro-optic spatial light modulator from an engineered organic layer. Nat Commun. 2021;12(1):5928.

    [121] Zheng T, Gu Y, Kwon H, Roberts G, Faraon A. Dynamic light manipulation via silicon-organic slot metasurfaces. Nat Commun. 2024;15(1):1557.

    [122] Sun X, Liu G, Yu H, Ban D, Deng N, Qiu F. Design and theoretical characterization of high speed metasurface modulators based on electro-optic polymer. Opt Express. 2021;29(6):9207–9216.

    [123] Huang Y-W, Lee HWH, Sokhoyan R, Pala RA, Thyagarajan K, Han S, Tsai DP, Atwater HA. Gate-tunable conducting oxide Metasurfaces. Nano Lett. 2016;16(9):5319–5325.

    [124] Park J, Kang J-H, Kim SJ, Liu X, Brongersma ML. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett. 2016;17(1):407–413.

    [125] Kafaie Shirmanesh G, Sokhoyan R, Pala RA, Atwater HA. Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability. Nano Lett. 2018;18(5):2957–2963.

    [126] Shirmanesh GK, Sokhoyan R, Wu PC, Atwater HA. Electro-optically tunable multifunctional metasurfaces. ACS Nano. 2020;14(6):6912–6920.

    [127] Park J, Jeong BG, Kim SI, Lee D, Kim J, Shin C, Lee CB, Otsuka T, Kyoung J, Kim S, et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat Nanotechnol. 2020;16(1):69–76.

    [128] Yao Y, Kats MA, Genevet P, Yu N, Song Y, Kong J, Capasso F. Broad electrical tuning of graphene-loaded Plasmonic antennas. Nano Lett. 2013;13(3):1257–1264.

    [129] Han S, Kim S, Kim S, Low T, Brar VW, Jang MS. Complete complex amplitude modulation with electronically tunable graphene plasmonic metamolecules. ACS Nano. 2020;14(1):1166–1175.

    [130] Ai H, Kang Q, Wang W, Guo K, Guo Z. Multi-beam steering for 6G communications based on graphene metasurfaces. Sensors. 2021;21(14):4784.

    [131] Kim T-T, Oh SS, Kim HD, Park HS, Hess O, Min B, Zhang S. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Sci Adv. 2017;3(9): Article e1701377.

    [132] Kim S, Jang MS, Brar VW, Mauser KW, Kim L, Atwater HA. Electronically tunable perfect absorption in graphene. Nano Lett. 2018;18(2):971–979.

    [133] Komar A, Paniagua-Domínguez R, Miroshnichenko A, Yu YF, Kivshar YS, Kuznetsov AI, Neshev D. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photonics. 2018;1742–1748.

    [134] Badloe T, Kim I, Kim Y, Kim J, Rho J. Electrically tunable bifocal Metalens with diffraction-limited focusing and imaging at visible wavelengths. Adv Sci. 2021;8(21):2102646.

    [135] Bosch M, Shcherbakov MR, Won K, Lee HS, Kim Y, Shvets G. Electrically actuated varifocal lens based on liquid-crystal-embedded dielectric Metasurfaces. Nano Lett. 2021;21(9):3849–3856.

    [136] Li S-Q, Xu X, Maruthiyodan Veetil R, Valuckas V, Paniagua-Domínguez R, Kuznetsov AI. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science. 2019;364(6445):1087–1090.

    [137] Zhang S, Wang Q, Gao X, Zhang D, Zhuang S. Two-level optical encryption platform via an electrically driven liquid-crystal-integrated tri-channel metasurface. Opt Lett. 2023;48(15):4125–4128.

    [138] Wu PC, Pala RA, Kafaie Shirmanesh G, Cheng WH, Sokhoyan R, Grajower M, Alam MZ, Lee D, Atwater HA. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat Commun. 2019;10(1):3654.

    [139] Holsteen AL, Cihan AF, Brongersma ML. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science. 2019;365(6450):257–260.

    [140] Belotelov VI, Akimov IA, Pohl M, Kotov VA, Kasture S, Vengurlekar AS, Gopal AV, Yakovlev DR, Zvezdin AK, Bayer M. Enhanced magneto-optical effects in magnetoplasmonic crystals. Nat Nanotechnol. 2011;6(6):370–376.

    [141] Belotelov VI, Kreilkamp LE, Akimov IA, Kalish AN, Bykov DA, Kasture S, Yallapragada VJ, Venu Gopal A, Grishin AM, Khartsev SI, et al. Plasmon-mediated magneto-optical transparency. Nat Commun. 2013;4:2128.

    [142] Valente J, Ou J-Y, Plum E, Youngs IJ, Zheludev NI. Reconfiguring photonic metamaterials with currents and magnetic fields. Appl Phys Lett. 2015;106:111905.

    [143] Zubritskaya I, Maccaferri N, Inchausti Ezeiza X, Vavassori P, Dmitriev A. Magnetic control of the chiroptical plasmonic surfaces. Nano Lett. 2017;18(1):302–307.

    [144] Qin J, Deng L, Kang T, Nie L, Feng H, Wang H, Yang R, Liang X, Tang T, Shen J, et al. Switching the optical chirality in magnetoplasmonic metasurfaces using applied magnetic fields. ACS Nano. 2020;14(3):2808–2816.

    [145] Chen Y, Liang Q, Ji CY, Liu X, Wang R, Li J. A magnetic actuation scheme for nano-kirigami metasurfaces with reconfigurable circular dichroism. J Appl Phys. 2022;131:233102.

    [146] Padilla WJ, Taylor AJ, Highstrete C, Lee M, Averitt RD. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev Lett. 2006;96(10):107401.

    [147] Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier SA, Tian Z, Azad AK, Chen HT, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun. 2012;3:1151.

    [148] Shcherbakov MR, Liu S, Zubyuk VV, Vaskin A, Vabishchevich PP, Keeler G, Pertsch T, Dolgova TV, Staude I, Brener I, et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat Commun. 2017;8(1):17.

    [149] Guo J, Wang T, Zhao H, Wang X, Feng S, Han P, Sun W, Ye J, Situ G, Chen HT, et al. Reconfigurable terahertz metasurface pure phase holograms. Adv Optic Mater. 2019;7:1801696.

    [150] Guo P, Schaller RD, Ketterson JB, Chang RPH. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat Photonics. 2016;10:267–273.

    [151] Yang Y, Kelley K, Sachet E, Campione S, Luk TS, Maria JP, Sinclair MB, Brener I. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat Photonics. 2017;11:390–395.

    [152] Ren M-X, Wu W, Cai W, Pi B, Zhang XZ, Xu JJ. Reconfigurable metasurfaces that enable light polarization control by light. Light Sci Appl. 2016;6(6):e16254–e16254.

    [153] Pettine J, Padmanabhan P, Shi T, Gingras L, McClintock L, Chang CC, Kwock KWC, Yuan L, Huang Y, Nogan J, et al. Light-driven nanoscale vectorial currents. Nature. 2024;626(8001):984–989.

    [154] Duan X, Kamin S, Liu N. Dynamic plasmonic colour display. Nat Commun. 2017;8:14606.

    [155] Kaissner R, Li J, Lu W, Li X, Neubrech F, Wang J, Liu N. Electrochemically controlled metasurfaces with high-contrast switching at visible frequencies. Sci Adv. 2021;7(19):eabd9450.

    [156] Li Y, van de Groep J, Talin AA, Brongersma ML. Dynamic tuning of gap plasmon resonances using a solid-state electrochromic device. Nano Lett. 2019;19(11):7988–7995.

    [157] Yu P, Li J, Zhang S, Jin Z, Schütz G, Qiu CW, Hirscher M, Liu N. Dynamic Janus metasurfaces in the visible spectral region. Nano Lett. 2018;18(7):4584–4589.

    [158] Li J, Kamin S, Zheng G, Neubrech F, Zhang S, Liu N. Addressable metasurfaces for dynamic holography and optical information encryption. Sci Adv. 2018;4(6):eaar6768.

    [159] Thyagarajan K, Sokhoyan R, Zornberg L, Atwater HA. Millivolt modulation of plasmonic metasurface optical response via ionic conductance. Adv Mater. 2017;29(31):1701044.

    [160] Abb M, Wang Y, de Groot CH, Muskens OL. Hotspot-mediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas. Nat Commun. 2014;5:4869.

    [161] Kang L, Cui Y, Lan S, Rodrigues SP, Brongersma ML, Cai W. Electrifying photonic metamaterials for tunable nonlinear optics. Nat Commun. 2014;5:4680.

    [162] Nicholls LH, Rodríguez-Fortuño FJ, Nasir ME, Córdova-Castro RM, Olivier N, Wurtz GA, Zayats AV. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nat Photonics. 2017;11:628–633.

    [163] Kruk SS, Wang L, Sain B, Dong Z, Yang J, Zentgraf T, Kivshar Y. Asymmetric parametric generation of images with nonlinear dielectric metasurfaces. Nat Photonics. 2022;16:561–565.

    [164] Wang H, Hu Z, Deng J, Zhang X, Chen J, Li K, Li G. All-optical ultrafast polarization switching with nonlinear plasmonic metasurfaces. Sci Adv. 2024;10(8):eadk3882.

    [165] McDonnell C, Deng J, Sideris S, Ellenbogen T, Li G. Functional THz emitters based on Pancharatnam-Berry phase nonlinear metasurfaces. Nat Commun. 2021;12(1):30.

    [166] Sharma M, Tal M, McDonnell C, Ellenbogen T. Electrically and all-optically switchable nonlocal nonlinear metasurfaces. Sci Adv. 2023;9(33):eadh2353.

    [167] Meng Y, Cao T, Long Y. Progress in metasurfaces based on Ge–Sb–Te phase-change materials. J Appl Phys. 2020;128:140904.

    [168] Yang J, Gurung S, Bej S, Ni P, Howard Lee HW. Active optical metasurfaces: Comprehensive review on physics, mechanisms, and prospective applications. Rep Prog Phys. 2022;85(3): Article 036101.

    [169] Cui T, Bai B, Sun HB. Tunable metasurfaces based on active materials. Adv Funct Mater. 2019;29:1806692.

    [170] Jeong YG, Bahk YM, Kim DS. Dynamic terahertz plasmonics enabled by phase-change materials. Adv Optic Mater. 2019;8:1900548.

    [171] Chandra S, Franklin D, Cozart J, Safaei A, Chanda D. Adaptive multispectral infrared camouflage. ACS Photonics. 2018;5:4513–4519.

    [172] Park J, Jeong BG, Kim SI, Lee D, Kim J, Shin C, Lee CB, Otsuka T, Kyoung J, Kim S, et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat Nanotechnol. 2021;16(1):69–76.

    [173] Wang Q, Rogers ETF, Gholipour B, Wang CM, Yuan G, Teng J, Zheludev NI. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat Photonics. 2015;10:60–65.

    [174] Abdelraouf OAM, Wang Z, Liu H, Dong Z, Wang Q, Ye M, Wang XR, Wang QJ, Liu H. Recent advances in tunable metasurfaces: Materials, design, and applications. ACS Nano. 2022;16(9):13339–13369.

    [175] Sahoo D, Naik R. GSST phase change materials and its utilization in optoelectronic devices: A review. Mater Res Bull. 2022;148:111679.

    [176] Zhang W, Mazzarello R, Wuttig M, Ma E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat Rev Mater. 2019;4:150–168.

    [177] Wuttig M, Bhaskaran H, Taubner T. Phase-change materials for non-volatile photonic applications. Nat Photonics. 2017;11:465–476.

    [178] Tonkaev P, Sinev IS, Rybin MV, Makarov SV, Kivshar Y. Multifunctional and transformative metaphotonics with emerging materials. Chem Rev. 2022;122(199):15414–15449.

    [179] Kepič P, Ligmajer F, Hrtoň M, Ren H, Menezes LS, Maier SA, Šikola T. Optically tunable Mie resonance VO2 nanoantennas for metasurfaces in the visible. ACS Photonics. 2021;8:1048–1057.

    [180] Ma J, Kang T, Ke Z, Yao M, Ma X, Luo Q, Bi L, Qin J. Tunable far-infrared polarization imaging based on VO2 metasurfaces. Adv Optic Mater. 2023;12:2302390.

    [181] Long L, Taylor S, Wang L. Enhanced infrared emission by thermally switching the excitation of magnetic polariton with scalable microstructured VO2 metasurfaces. ACS Photonics. 2020;7:2219–2227.

    [182] King J, Wan C, Park TJ, Deshpande S, Zhang Z, Ramanathan S, Kats MA. Electrically tunable VO2–metal metasurface for mid-infrared switching, limiting and nonlinear isolation. Nat Photonics. 2023;18:74–80.

    [183] Shu FZ, Wang JN, Peng RW, Xiong B, Fan RH, Gao YJ, Liu Y, Qi DX, Wang M. Electrically driven tunable broadband polarization states via active metasurfaces based on joule-heat-induced phase transition of vanadium dioxide. Laser Photonics Rev. 2021;15:2100155.

    [184] Kim Y, Wu PC, Sokhoyan R, Mauser K, Glaudell R, Kafaie Shirmanesh G, Atwater HA. Phase modulation with electrically tunable vanadium dioxide phase-change Metasurfaces. Nano Lett. 2019;19(6):3961–3968.

    [185] Appavoo K, Haglund RF. Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial. Nano Lett. 2011;11(3):1025–1031.

    [186] Joushaghani A, Jeong J, Paradis S, Alain D, Stewart Aitchison J, Poon JKS. Electronic and thermal effects in the insulator-metal phase transition in VO2 nano-gap junctions. Appl Phys Lett. 2014;105:231904.

    [187] Joushaghani A, Jeong J, Paradis S, Alain D, Stewart Aitchison J, Poon JKS. Voltage-controlled switching and thermal effects in VO2 nano-gap junctions. Appl Phys Lett. 2014;104:221904.

    [188] Liu M, Hwang HY, Tao H, Strikwerda AC, Fan K, Keiser GR, Sternbach AJ, West KG, Kittiwatanakul S, Lu J, et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature. 2012;487(7407):345–348.

    [189] Cotrufo M, Sulejman SB, Wesemann L, Rahman MA, Bhaskaran M, Roberts A, Alù A. Reconfigurable image processing metasurfaces with phase-change materials. Nat Commun. 2024;15(1):4483.

    [190] Duan R, Sun J, Zhang Y, Li H, Li Y, Liu Z. A non-volatile quasi-continuous all-optical fiber programmable platform based on GST-coated microspheres. ACS Photonics. 2022;9:1180–1187.

    [191] Tian J, Luo H, Yang Y, Ding F, Qu Y, Zhao D, Qiu M, Bozhevolnyi SI. Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5. Nat Commun. 2019;10(1):396.

    [192] Chu CH, Tseng ML, Chen J, Wu PC, Chen YH, Wang HC, Chen TY, Hsieh WT, Wu HJ, Sun G, et al. Active dielectric metasurface based on phase-change medium. Laser Photonics Rev. 2016;10:986–994.

    [193] Sámson ZL, MacDonald KF, de Angelis F, Gholipour B, Knight K, Huang CC, di Fabrizio E, Hewak DW, Zheludev NI. Metamaterial electro-optic switch of nanoscale thickness. Appl Phys Lett. 2010;96:143105.

    [194] Gholipour B, Zhang J, MacDonald KF, Hewak DW, Zheludev NI. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv Mater. 2013;25(22):3050–3054.

    [195] Shalaginov MY, An S, Zhang Y, Yang F, Su P, Liberman V, Chou JB, Roberts CM, Kang M, Rios C, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat Commun. 2021;12:1225.

    [196] Sha X, An S, Zhang Y, Yang F, Su P, Liberman V, Chou JB, Roberts CM, Kang M, Rios C, et al. Chirality tuning and reversing with resonant phase-change metasurfaces. Sci Adv. 2024;10(1):eadn9017.

    [197] Atikian HA, Sinclair N, Latawiec P, Xiong X, Meesala S, Gauthier S, Wintz D, Randi J, Bernot D, DeFrances S, et al. Diamond mirrors for high-power continuous-wave lasers. Nat Commun. 2022;13(1):2610.

    Tianyue Li, Haotian Xu, Mingcheng Panmai, Tianhua Shao, Geze Gao, Fei Xu, Guangwei Hu, Shuming Wang, Zhenlin Wang, Shining Zhu. Ultrafast Metaphotonics[J]. Ultrafast Science, 2024, 4(1): 0074
    Download Citation