• Journal of Inorganic Materials
  • Vol. 38, Issue 3, 329 (2023)
Zhiqiang WANG1, Ji’an WU1, Kunfeng CHEN1,*, and Dongfeng XUE2,*
Author Affiliations
  • 11. Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 22. Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
  • show less
    DOI: 10.15541/jim20220646 Cite this Article
    Zhiqiang WANG, Ji’an WU, Kunfeng CHEN, Dongfeng XUE. Large-size Er,Yb:YAG Single Crystal: Growth and Performance[J]. Journal of Inorganic Materials, 2023, 38(3): 329 Copy Citation Text show less
    References

    [1] X G MA, X Y LI, J Q LI et al. Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics. Nature Communications, 1175(2018).

    [2] C T SUN, D XUE. Study on the crystallization process of function inorganic crystal materials. Scientia Sinica Technologica, 1123(2014).

    [3] C T SUN, D XUE. Chemical bonding in micro-pulling down process: high throughput single crystal growth. Science China Technological Sciences, 1776(2018).

    [4] D L CHUBB, A M T PAL, M O PATTON et al. Rare earth doped yttrium aluminum garnet (YAG) selective emitters. Materials & Design, 591(2001).

    [5] M UPASANI, B BUTEY, S V MOHARIL. Photoluminescence study of rare earth doped yttrium aluminum garnet-YAG:RE (RE: Eu3+, Pr3+ and Tb3+). Optik, 2004(2016).

    [6] E GEORGIOU, O MUSSET, J P BOQUILLON et al. 50 mJ/30 ns FTIR Q-switched diode-pumped Er:Yb:glass 1.54 μm laser. Optics Communications, 147(2001).

    [7] Z MIERCZYK, M KWASNY, K KOPCZYNSKI et al. Er3+ and Yb3+ doped active media for ‘Eye-Safe’ laser systems. Journal of Alloys and Compounds, 398(2020).

    [8] G YANG, J HAN, X LI et al. Growth of 8 inch Yb:YAG single crystal by Czochralski method. Journal of Synthetic Crystals, 48:, 1216(2019).

    [9] R J BAO, L YU, L H YE et al. Compact and sensitive Er3+/Yb3+ co-doped YAG single crystal optical fiber thermometry based on up-conversion luminescence. Sensors and Actuators A: Physical, 269:, 182(2018).

    [10] Y GUO, L HUANG, J ZHOU et al. Czochralski growth and investigation on the photoluminescence properties of YAG:Er single crystal. Journal of Synthetic Crystals, 48:, 24(2019).

    [11] S V NIZHANKOVSKYI, A A KOZLOVSKYI, N O KOVALENKO et al. Optical and luminescence properties of Er,Yb:YAG crystals grown by horizontal directional crystallization method. Functional Materials, 35(2019).

    [12] C T SUN, D XUE. Chemical bonding theory of single crystal growth and its application to ϕ3'' YAG bulk crystal. CrystEngComm, 2129(2014).

    [13] C T SUN, D XUE. Crystal growth: an anisotropic mass transfer process at the interface. Physical Chemistry Chemical Physics, 12407(2017).

    [14] P Z YANG, P Z DENG, J XU et al. Growth of high-quality single crystal of 30at% Yb:YAG and its laser performance. Journal of Crystal Growth, 348(2000).

    [15] X D XU, Z W ZHAO, P X SONG et al. Growth of high-quality single crystal of 50at% Yb:YAG and its spectral properties. Journal of Alloys and Compounds, 311(2004).

    [16] X D XU, Z W ZHAO, H H WANG et al. Spectroscopic and thermal properties of Cr,Yb:YAG crystal. Journal of Crystal Growth, 317(2004).

    [17] M D ZHU, H J QI, M Y PAN et al. Growth and luminescent properties of Yb:YAG and Ca co-doped Yb:YAG ultrafast scintillation crystals. Journal of Crystal Growth, 490:, 51(2018).

    [18] A BOGAERTS, R GIJBELS. New developments and applications in GDMS. Fresenius Journal of Analytical Chemistry, 367(1999).

    [19] SABATINO M DI. Detection limits for glow discharge mass spectrometry (GDMS) analyses of impurities in solar cell silicon. Measurement, 50:, 135(2014).

    [20] P Z YANG, P Z DENG, Z W YIN et al. The growth defects in Czochralski-grown Yb:YAG crystal. Journal of Crystal Growth, 87(2000).

    [21] H B YIN, P Z DENG, F X GAN. Defects in YAG:Yb crystals. Journal of Applied Physics, 3825(1998).

    [22] J P HURRELL, S P S PORTO, I F CHANG et al. Optical phonons of yttrium aluminum garnet. Physical Review, 851(1968).

    [23] K PAPAGELIS, G KANELLIS, S VES et al. Lattice dynamical properties of the rare earth aluminum garnets (RE3Al5O12). Physica Status Solidi B-Basic Solid State Physics, 134(2002).

    [24] Y F CHEN, P K LIM, S J LIM et al. Raman scattering investigation of Yb:YAG crystals grown by the Czochralski method. Journal of Raman Spectroscopy, 882(2003).

    [25] K PAPAGELIS, G KANELLIS, J ARVANITIDIS et al. Phonons in rare-earth aluminum garnets and their relation to lattice vibration of AlO4. Physica Status Solidi B-Basic Research, 193(1999).

    [26] H W QIU, P Z YANG, J DONG et al. The influence of Yb concentration on laser crystal Yb:YAG. Materials Letters, 1(2002).

    [27] T WANG, J ZHANG, N ZHANG et al. The characteristics of high-quality Yb:YAG single crystal fibers grown by a LHPG method and the effects of their discoloration. RSC Advances, 22567(2019).

    [28] X D WANG, X D XU, X H ZENG et al. Effects of Yb concentration on the spectroscopic properties of Yb:Y3Al5O12. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 49(2006).

    [29] X D WANG, X D XU, Z W ZHAO et al. Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals. Optical Materials, 1662(2007).

    [30] N GUERASSIMOVA, N GARNIER, C DUJARDIN et al. X-ray-excited charge transfer luminescence in YAG:Yb and YbAG. Journal of Luminescence, 94:, 11(2001).

    [31] Y ZORENKO, V GORBENKO, V SAVCHYN et al. Luminescence properties and energy transfer processes in YAG:Yb,Er single crystalline films. Radiation Measurements, 56:, 134(2013).

    [32] D K SARDAR, C C RUSSELL, J B GRUBER et al. Absorption intensities and emission cross sections of principal intermanifold and inter-stark transitions of Er3+ (4f11) in polycrystalline ceramic garnet Y3Al5O12. Journal of Applied Physics, 123501(2005).

    [33] G W BURDICK, J B GRUBER, K L NASH et al. Analyses of 4f11 energy levels and transition intensities between stark levels of Er3+ in Y3Al5O12. Spectroscopy Letters, 406(2010).

    [34] J ZHOU, W X ZHANG, L WANG et al. Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics. Ceramics International, 119(2011).

    [35] M SEKITA, H HANEDA, S SHIRASAKI et al. Optical spectra of undoped and rare‐earth‐(=Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12. Journal of Applied Physics, 3709(1991).

    [36] S V NIZHANKOVSKYI, A A KOZLOVSKYI, N O KOVALENKO et al. Spectral properties of Er-doped yttrium aluminum garnet crystals grown by modified horizontal directional crystallization method. Functional Materials, 646(2018).

    [37] F BI, X T DONG, J X WANG et al. Facile electrospinning preparation and up-conversion luminescence performance of Y3Al5O12:Er3+,Yb3+ nanobelts. Journal of Inorganic and Organometallic Polymers and Materials, 407(2014).

    [38] V KATARIA, D S MEHTA. Investigation of concurrent emissions in visible, UV and NIR region in Gd2O2S:Er,Yb nanophosphor by diverse excitation wavelengths as a function of firing temperature. Optical Materials, 95:, 109204(2019).

    Zhiqiang WANG, Ji’an WU, Kunfeng CHEN, Dongfeng XUE. Large-size Er,Yb:YAG Single Crystal: Growth and Performance[J]. Journal of Inorganic Materials, 2023, 38(3): 329
    Download Citation