[1] Q WU, Y XUE, S CHAO et al. Moiré superlattice MXene nanosheets constructed from twisted hexagon-Ti3AlC2 by microwave-assisted Lewis molten salt etching: implications for structural stability in electrochemical energy storage. ACS Applied Nano Materials, 677(2022).
[3] Z XU, M WU, Z CHEN et al. Direct structure-performance comparison of all-carbon potassium and sodium ion capacitors. Advanced Science, 1802272(2019).
[4] J LIANG, A RAWAL, M YU et al. Low-potential solid-solid interfacial charging on layered polyaniline anode for high voltage pseudocapacitive intercalation Li-ion supercapacitors. Nano Energy, 108010(2023).
[5] H TANG, J YAO, Y ZHU. Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Advanced Energy Materials, 2003994(2021).
[6] T LI, H ZHAO, C LI et al. Recent progress and prospects in anode materials for potassium-ion capacitors. New Carbon Materials, 253(2021).
[7] Y CUI, L ZHAO, B LI et al. Tailored MoS2 bilayer grafted onto N/S-doped carbon for ultra-stable potassium-ion capacitor. Chemical Engineering Journal, 137815(2022).
[8] B ANASORI, M R LUKATSKAVA, Y GOGOTSI. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 16098(2017).
[9] M R LUKATSKAVA, S KOTA, Z LIN et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 17105(2017).
[10] S WAN, X LI, Y CHEN et al. Ultrastrong MXene films
[11] Y MENG, P ZENG, X Y YANG et al. Simultaneously achieving enhanced water adsorption and rapid adsorbed hydroxyl transfer toward MXene-based materials for highly efficient alkaline electrocatalytic hydrogen evolution. Chemical Engineering Journal, 143372(2023).
[12] L LIU, H ZSCHIESCHE, M ANTONIETTI et al. Tuning the surface chemistry of MXene to improve energy storage: example of nitrification by salt melt. Advanced Energy Materials, 2202709(2023).
[13] L LI, Q F CHENG. Recent advances in the high performance MXenes nanocomposites. Journal of Inorganic Materials, 153(2024).
[14] X WANG, N LI, J YIN et al. Interface interaction-mediated design of tough and conductive MXene-composited polymer hydrogel with high stretchability and low hysteresis for high-performance multiple sensing. Science China Materials, 272(2023).
[15] Z PAN, Y JIANG, P YANG et al.
[16] K LI, J LI, Q ZHU et al. Three-dimensional MXenes for supercapacitors: a review. Small Methods, 2101537(2022).
[18] J LUO, C WANG, H WANG et al. Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Advanced Functional Materials, 1805946(2019).
[19] J ZHAO, J WEN, J XIAO et al. Nb2CT
[20] Y TIAN, W QUE, Y LUO et al. Surface nitrogen-modified 2D titanium carbide (MXene) with high energy density for aqueous supercapacitor applications. Journal of Materials Chemistry A, 5416(2019).
[21] Z ZOU, Q WANG, K ZHU et al. Ultrathin-walled Bi2S3 nanoroll/MXene composite toward high capacity and fast lithium storage. Small, 2106673(2022).
[22] J CHEN, Y REN, H ZHANG et al. Ni-Co-Fe layered double hydroxide coated on Ti3C2 MXene for high-performance asymmetric supercapacitor. Applied Surface Science, 150116(2021).
[23] H TANG, W CHEN, N LI et al. Layered MnO2 nanodots as high-rate and stable cathode materials for aqueous zinc-ion storage. Energy Storage Materials, 335(2022).
[24] M HAN, J YAO, J HUANG et al. Synergistic chemical and electrochemical strategy for high-performance Zn//MnO2 batteries. Chinese Chemical Letters, 107493(2023).
[25] J WANG, W GUO, Z LIU et al. Engineering of self-aggregation- resistant MnO2 heterostructure with a built-in field for enhanced high-mass-loading energy storage. Advanced Energy Materials, 2300224(2023).
[26] Y DAI, J ZHANG, X YAN et al. Investigating the electrochemical performance of MnO2 polymorphs as cathode materials for aqueous proton batteries. Chemical Engineering Journal, 144158(2023).
[27] X L LI, J F ZHU, Y H JIAO et al. Manganese dioxide morphology on electrochemical performance of Ti3C2T
[28] Y TANG, S ZHENG, Y XU et al. Advanced batteries based on manganese dioxide and its composites. Energy Storage Materials, 284(2018).
[29] J WANG, J G WANG, H LIU et al. Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. Journal of Materials Chemistry A, 13727(2019).
[30] J JABLONSKIENE, D SIMKUNAITE, J VAICIUNIENE et al. Synthesis of carbon-supported MnO2 nanocomposites for supercapacitors application. Crystals, 784(2021).
[31] S J CLARK, M D SEGALL, C J PICKAD et al. First principles methods using CASTEP. Zeitschrift für Kristallographie - Crystalline Materials, 567(2005).
[32] M YU, S YANG, C WU et al. Machine learning the Hubbard U parameter in DFT+U using Bayesian optimization. npj Computational Materials, 180(2020).
[34] X ZHU, Z CAO, W WANG et al. Superior-performance aqueous zinc-ion batteries based on the
[35] D WANG, Y GAO, Y LIU et al. Investigation of chloride ion adsorption onto Ti2C MXene monolayers by first-principles calculations. Journal of Materials Chemistry A, 24720(2017).
[36] C XU, B XU, Y GU et al. Graphene-based electrodes for electrochemical energy storage. Energy & Environmental Science, 1388(2013).
[37] S XI, X CHENG, X GAO et al. Simple fabrication of Ti3C2/MnO2 composites as cathode material for high capacity and long cycle lifespan Zn-ion batteries. Energy Technology, 2300122(2023).
[38] Q WANG, H YUAN, M ZHANG et al. A highly conductive and supercapacitive MXene/N-CNT electrode material derived from a MXene-Co-melamine precursor. ACS Applied Electronic Materials, 2506(2023).
[39] S YAN, Q WANG, S LUO et al. Coal-based S hybrid self-doped porous carbon for high-performance supercapacitors and potassium- ion batteries. Journal of Power Sources, 228151(2020).
[40] L SI, Q XIA, K LIU et al. Hydrothermal synthesis of layered NiS2/Ti3C2T
[41] X HONG, C DENG, X WANG et al. Carbon nanosheets/MnO2/ NiCo2O4 ternary composite for supercapacitor electrodes. Journal of Energy Storage, 105086(2022).
[42] J KUNWAR, D ACHARYA, K CHHETRI et al. Cobalt oxide decorated 2D MXene: a hybrid nanocomposite electrode for high- performance supercapacitor application. Journal of Electroanalytical Chemistry, 117915(2023).
[43] Y LUO, C YANG, Y TIAN et al. A long cycle life asymmetric supercapacitor based on advanced nickel-sulfide/titanium carbide (MXene) nanohybrid and MXene electrodes. Journal of Power Sources, 227694(2020).
[44] X ZHANG, F ZHANG, D WEI et al. Design and synthesis of K-doped tremella-like
[45] Y FENG, M ZHANG, H YAN et al. Microwave-assisted efficient exfoliation of MXene and its composite for high-performance supercapacitors. Ceramics International, 9518(2022).
[46] Y ZHANG, P CHEN, Q WANG et al. High-capacity and kinetically accelerated lithium storage in MoO3 enabled by oxygen vacancies and heterostructure. Advanced Energy Materials, 2101712(2021).
[47] S WEN, J W LEE, I H YEO et al. The role of cations of the electrolyte for the pseudocapacitive behavior of metal oxide electrodes, MnO2 and RuO2. Electrochimica Acta, 849(2004).
[48] L SONG, Y DUAN, Y ZHANG et al. Promoting defect formation and microwave loss properties in
[49] Y ZHOU, Z ZHOU, L HU et al. A facile approach to tailor electrocatalytic properties of MnO2 through tuning phase transition, surface morphology and band structure. Chemical Engineering Journal, 135561(2022).
[50] M X XIAO, M M LI, E H SONG et al. Halogenated Ti3C2 MXene as high capacity electrode material for Li-ion batteries. Journal of Inorganic Materials, 660(2022).
[51] X JIN, S J SHIN, N KIM et al. Superior role of MXene nanosheet as hybridization matrix over graphene in enhancing interfacial electronic coupling and functionalities of metal oxide. Nano Energy, 841(2018).