• Advanced Photonics Nexus
  • Vol. 3, Issue 4, 046006 (2024)
Zhichuang Wang1,2,†, Jiawen Zhi3, Hanzhong Wu3,*, Brent E. Little1..., Sai T. Chu4, Jie Zhang3, Zehuang Lu3, Chenggang Shao3,*, Weiqiang Wang1,2,* and Wenfu Zhang1,2,*|Show fewer author(s)
Author Affiliations
  • 1Chinese Academy of Sciences, Xi’an Institute of Optics and Precision Mechanics, State Key Laboratory of Transient Optics and Photonics, Xi’an, China
  • 2University of Chinese Academy of Sciences, Beijing, China
  • 3Huazhong University of Science and Technology, PGMF and School of Physics, MOE Key Laboratory of Fundamental Physical Quantities Measurements, Hubei Key Laboratory of Gravitation and Quantum Physics, Wuhan, China
  • 4City University of Hong Kong, Department of Physics and Materials Science, Hong Kong, China
  • show less
    DOI: 10.1117/1.APN.3.4.046006 Cite this Article Set citation alerts
    Zhichuang Wang, Jiawen Zhi, Hanzhong Wu, Brent E. Little, Sai T. Chu, Jie Zhang, Zehuang Lu, Chenggang Shao, Weiqiang Wang, Wenfu Zhang, "Rapid and precise distance measurement with hybrid comb lasers," Adv. Photon. Nexus 3, 046006 (2024) Copy Citation Text show less
    References

    [1] G. Berkovic, E. Shafir. Optical methods for distance and displacement measurements. Adv. Opt. Photonics, 4, 441-471(2012).

    [2] S. A. Diddams, K. Vahala, T. Udem. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science, 369, 3676(2020).

    [3] S. A. Diddams. The evolving optical frequency comb [Invited]. J. Opt. Soc. Am. B, 27, B51-B62(2010).

    [4] J. Ye. Absolute measurement of a long, arbitrary distance to less than an optical fringe. Opt. Lett., 29, 1153-1155(2004).

    [5] H. Z. Wu et al. Long distance measurement using optical sampling by cavity tuning. Opt. Lett., 41, 2366-2369(2016).

    [6] D. Wei et al. Time-of-flight method using multiple pulse train interference as a time recorder. Opt. Express, 19, 4881-4889(2011).

    [7] S. Han et al. Absolute distance measurement by adjustable synthetic wavelength dual-comb interferometry, CTu2I.8(2013).

    [8] H. Z. Wu et al. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry. Opt. Express, 24, 24361-24376(2016).

    [9] M. Cui et al. Long distance measurement with femtosecond pulses using a dispersive interferometer. Opt. Express, 19, 6549-6562(2011).

    [10] X. Liang et al. Optical frequency comb frequency-division multiplexing dispersive interference multichannel distance measurement. Nanomanuf. Metrol., 6, 6(2023).

    [11] R. D. Nicolae et al. Absolute distance measurement system using a femtosecond laser as a modulator. Meas. Sci. Technol., 21, 115302(2010).

    [12] K. Minoshima, H. Matsumoto. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt., 39, 5512-5517(2000).

    [13] R. T. Yang et al. Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection. Meas. Sci. Technol., 26, 084001(2015).

    [14] C. Weimann et al. Fast high-precision distance metrology using a pair of modulator-generated dual-color frequency combs. Opt. Express, 26, 34305-34335(2018).

    [15] C. Weimann et al. Silicon photonic integrated circuit for fast and precise dual-comb distance metrology. Opt. Express, 25, 30091-30104(2017).

    [16] J. Lee et al. Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength. Meas. Sci. Technol., 24, 045201(2013).

    [17] D. T. Hu et al. Dual-comb absolute distance measurement of non-cooperative targets with a single free-running mode-locked fiber laser. Opt. Commun., 482, 126566(2021).

    [18] Z. B. Zhu, G. H. Wu. Dual-comb ranging. Engineering, 4, 772-778(2018).

    [19] S. Y. Zhou et al. Dual-comb spectroscopy resolved three-degree-of-freedom sensing. Photonics Res., 9, 243(2021).

    [20] S. L. Camenzind et al. Dynamic and precise long-distance ranging using a free-running dual-comb laser. Opt. Express, 30, 37245-37260(2022).

    [21] H. Wright et al. Two-photon dual-comb LiDAR, SS1A.1(2022).

    [22] I. Coddington et al. Rapid and precise absolute distance measurements at long range. Nat. Photonics, 3, 351-356(2009).

    [23] E. D. Caldwell et al. The time-programmable frequency comb and its use in quantum-limited ranging. Nature, 610, 667-673(2022).

    [24] Z. Wu et al. High-precision surface profilometry on a micron-groove based on dual-comb electronically controlled optical sampling. Appl. Opt., 62, 8793-8797(2023).

    [25] J. Lee et al. Time-of-flight measurement with femtosecond light pulses. Nat. Photonics, 4, 716-720(2010).

    [26] Y. J. Na et al. Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection. Nat. Photonics, 14, 355-360(2020).

    [27] T. Fortier, E. Baumann. 20 years of developments in optical frequency comb technology and applications. Commun. Phys., 2, 153(2019).

    [28] R. J. Zhuang et al. Electro-optic frequency combs: theory, characteristics, and applications. Laser Photonics Rev, 17, 2200353(2023).

    [29] V. Torres-Company, A. M. Weiner. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photonics Rev., 8, 368-393(2014).

    [30] P. Alexandre et al. Dual-comb interferometry for coherence analysis of tightly locked mid-infrared quantum cascade laser frequency combs. Adv. Photon. Res., 2400006(2024).

    [31] W. Q. Wang, L. R. Wang, W. F. Zhang. Advances in soliton microcomb generation. Adv. Photonics, 2, -034001(2020).

    [32] S. W. Huang et al. A broadband chip-scale optical frequency synthesizer at 2.7×1016 relative uncertainty. Sci. Adv., 2, 1501489(2016). https://doi.org/10.1126/sciadv.1501489

    [33] T. J. Kippenberg et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [34] A. Pasquazi et al. Micro-combs: a novel generation of optical sources. Phys. Rep., 729, 1-81(2018).

    [35] J. H. Zheng et al. Optical ranging system based on multiple pulse train interference using soliton microcomb. Appl. Phys. Lett., 118, 261106(2021).

    [36] J. D. Wang et al. Long-distance ranging with high precision using a soliton microcomb. Photonics Res., 8, 1964(2020).

    [37] Y. S. Jang et al. Nanometric precision distance metrology via hybrid spectrally resolved and homodyne interferometry in a single soliton frequency microcomb. Phys. Rev. Lett., 126, 023903(2021).

    [38] P. Trocha et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [39] M. G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [40] J. Riemensberger et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164-170(2020).

    [41] A. Lukashchuk et al. Dual chirped microcomb based parallel ranging at megapixel-line rates. Nat. Commun., 13, 3280(2022).

    [42] L. H. Jia et al. Nonlinear calibration of frequency modulated continuous wave LIDAR based on a microresonator soliton comb. Opt. Lett., 46, 1025-1028(2021).

    [43] R. X. Chen et al. Breaking the temporal and frequency congestion of LiDAR by parallel chaos. Nat. Photonics, 17, 306-314(2023).

    [44] A. Lukashchuk et al. Chaotic microcomb-based parallel ranging. Nat. Photonics, 17, 814-821(2023).

    [45] P. Del’Haye et al. Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nat. Photonics, 10, 516-520(2016).

    [46] V. Brasch et al. Self-referenced photonic chip soliton Kerr frequency comb. Light Sci. Appl., 6, e16202(2017).

    [47] Z. L. Newman et al. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).

    [48] P. Del’Haye et al. Full stabilization of a microresonator-based optical frequency comb. Phys. Rev. Lett., 101, 053903(2008).

    [49] J. D. Jost et al. All-optical stabilization of a soliton frequency comb in a crystalline microresonator. Opt. Lett., 40, 4723-4726(2015).

    [50] W. Weng et al. Spectral purification of microwave signals with disciplined dissipative Kerr solitons. Phys. Rev. Lett., 122, 013902(2019).

    [51] L. Stern et al. Direct Kerr frequency comb atomic spectroscopy and stabilization. Sci. Adv., 6, eaax6230(2020).

    [52] X. W. Liu et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nat. Commun., 12, 5428(2021).

    [53] P. Del’Haye et al. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett., 107, 063901(2011).

    [54] P. A. Williams, W. C. Swann, N. R. Newbury. High-stability transfer of an optical frequency over long fiber-optic links. J. Opt. Soc. Am. B, 25, 1284-1293(2008).

    [55] P. E. Ciddor. Refractive index of air: new equations for the visible and near infrared. Appl. Opt., 35, 1566-1573(1996).

    [56] J. Rönn et al. Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides. Nat. Commun., 10, 432(2019).

    [57] S. T. Liu et al. High-performance O-band quantum-dot semiconductor optical amplifiers directly grown on a CMOS compatible silicon substrate. ACS Photonics, 6, 2523-2529(2019).

    [58] N. B. Hébert et al. Coherent dual-comb interferometry with quasi-integer-ratio repetition rates. Opt. Express, 22, 29152-29160(2014).

    [59] R. Li et al. Ultra-rapid dual-comb ranging with an extended non-ambiguity range. Opt. Lett., 47, 5309-5312(2022).

    [60] H. Y. Zhang et al. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling. Opt. Express, 22, 6597-6604(2014).

    Zhichuang Wang, Jiawen Zhi, Hanzhong Wu, Brent E. Little, Sai T. Chu, Jie Zhang, Zehuang Lu, Chenggang Shao, Weiqiang Wang, Wenfu Zhang, "Rapid and precise distance measurement with hybrid comb lasers," Adv. Photon. Nexus 3, 046006 (2024)
    Download Citation