• Laser & Optoelectronics Progress
  • Vol. 60, Issue 2, 0234001 (2023)
Meng Wu1,*, Jiao Wang1, and Jiankai Xiang2
Author Affiliations
  • 1College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
  • 2Shaanxi Institute for the Preservation of Cultural Heritage, Xi'an 710075, Shaanxi, China
  • show less
    DOI: 10.3788/LOP212843 Cite this Article Set citation alerts
    Meng Wu, Jiao Wang, Jiankai Xiang. Optimization Strategy for X-Ray Generation and Countermeasure Fusion of Bronze Mirror[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0234001 Copy Citation Text show less
    X-ray imaging effect diagrams of copper mirror at different shooting energy. (a) High-energy shooting; (b) low-energy shooting
    Fig. 1. X-ray imaging effect diagrams of copper mirror at different shooting energy. (a) High-energy shooting; (b) low-energy shooting
    Copper mirror generative confrontation fusion network framework
    Fig. 2. Copper mirror generative confrontation fusion network framework
    Generator network structure based on multi-scale feature fusion
    Fig. 3. Generator network structure based on multi-scale feature fusion
    Discriminator network structure
    Fig. 4. Discriminator network structure
    Network training process
    Fig. 5. Network training process
    Copper mirror X-ray image control group. (a) High energy shooting effect group; (b) low energy shooting effect group
    Fig. 6. Copper mirror X-ray image control group. (a) High energy shooting effect group; (b) low energy shooting effect group
    Comparison of copper mirror fusion by different algorithms. (a) LP; (b) GFF; (c) LE-LP; (d) BFWLS; (e) O-BFWLS
    Fig. 7. Comparison of copper mirror fusion by different algorithms. (a) LP; (b) GFF; (c) LE-LP; (d) BFWLS; (e) O-BFWLS
    Comparison of copper mirror fusion in ablation experiment. (a) Fusion-GAN-CLF; (b) Fusion-GAN-MSFF; (c) proposed algorithm
    Fig. 8. Comparison of copper mirror fusion in ablation experiment. (a) Fusion-GAN-CLF; (b) Fusion-GAN-MSFF; (c) proposed algorithm
    Comparison of fusion effect details. (a) High-energy X-source image; (b) low-energy X-source image; (c) Fusion-GAN-CLF; (d) Fusion-GAN-MSF; (e) proposed algorithm
    Fig. 9. Comparison of fusion effect details. (a) High-energy X-source image; (b) low-energy X-source image; (c) Fusion-GAN-CLF; (d) Fusion-GAN-MSF; (e) proposed algorithm
    ImageMetricLPGFFLE-LPBFWLSO-BFWLS
    Group 1

    EN

    SF

    AG

    CEN

    JE

    NFMI

    4.9667

    10.6807

    2.0742

    2.566/2.971

    7.915/7

    1.9646

    4.857

    10.8896

    2.2773

    0.590/6.059

    7.584/7.092

    2.1598

    4.8333

    9.9375

    1.9118

    1.227/5.112

    7.590/7

    2.0651

    4.4198

    9.1235

    1.5558

    0.244/6.315

    6.597/6.447

    2.5458

    4.4291

    9.1596

    1.6132

    0.204/6.341

    6.576/6.455

    2.5696

    Group 2

    EN

    SF

    AG

    CEN

    JE

    NFMI

    4.2420

    6.8456

    2.0520

    0.193/0.303

    7.175/5.809

    1.9256

    4.1233

    7.4411

    1.9256

    0.525/0.457

    6.882/5.936

    2.0003

    4.205

    7.2289

    1.9665

    0.467/0.469

    6.879/5.918

    2.1584

    4.4404

    6.2832

    1.5032

    0.538/0.562

    6.100/5.763

    2.856

    4.2231

    6.2832

    1.5032

    0.531/0.541

    5.773/5.759

    3.138

    Group 3

    EN

    SF

    AG

    CEN

    JE

    NFMI

    5.1207

    6.8398

    1.8539

    0.047/0.550

    7.3246/7

    3.0145

    5

    5.8605

    1.8432

    0.455/0.590

    8.3765/7

    2.1592

    4.9781

    5.8595

    1.7057

    1.230/0.448

    7.8212/7

    2.7046

    5.1144

    6.5366

    1.4828

    0.052/0.564

    7.2544/7

    3.2308

    5.1144

    6.5366

    1.4828

    1.695/0.571

    5.0175/7

    4.9991

    Group 4

    EN

    SF

    AG

    CEN

    JE

    NFMI

    6.0487

    6.4464

    1.5824

    1.411/1.095

    11.36/9.669

    1.1782

    5.6106

    8.6505

    1.7474

    3.461/0.806

    10.86/9.155

    0.9797

    5.5615

    8.2303

    1.6409

    1.364/1.266

    10.70/8.996

    0.8909

    5.4072

    8.3238

    1.3300

    0.097/1.631

    10.70/8.995

    1.002

    5.4152

    8.1558

    1.4989

    0.065/1.483

    10.73/9.021

    0.9821

    Group 5

    EN

    SF

    AG

    CEN

    JE

    NFMI

    3.9007

    5.5334

    1.3779

    0.437/0.338

    6.177/5.645

    1.8198

    3.6696

    6.0313

    1.2521

    0.202/0.193

    5.901/5.443

    1.8778

    3.7686

    5.5984

    1.2257

    0.700/0.340

    5.658/5.343

    2.1215

    3.735

    6.0035

    1.1408

    0.149/0.544

    5.126/5.198

    2.4949

    3.7331

    6.0789

    1.2949

    0.058/0.541

    4.623/5.197

    2.9579

    Table 1. Objective evaluation results of different algorithms on different images
    ImageMetricFusion-GAN-CLFFusion-GAN-MSFFProposed algorithm
    Group 1

    EN

    SF

    AG

    CEN

    JE

    NFMI

    4.5475

    10.399

    2.1427

    9.493/1.006

    7.832/6.872

    2.9488

    4.5868

    10.0421

    1.9867

    9.455/1.278

    7.770/6.839

    3.0166

    4.5875

    10.7134

    2.222

    9.657/1.021

    7.858/6.905

    2.9875

    Group 2

    EN

    SF

    AG

    CEN

    JE

    NFMI

    4.2864

    8.6157

    2.1602

    12.37/15.60

    6.865/5.250

    2.3429

    4.2724

    8.4269

    2.0118

    12.43/15.71

    6.839/5.252

    2.3629

    4.3101

    8.7189

    2.1705

    12.33/15.55

    6.914/5.259

    2.3559

    Group 3

    EN

    SF

    AG

    CEN

    JE

    NFMI

    5.942

    10.2126

    3.4667

    9.674/13.42

    8.055/6.836

    2.537

    5.933

    9.4506

    3.0807

    9.447/13.35

    7.898/6.800

    2.5786

    5.9653

    10.3992

    3.5488

    9.438/13.23

    8.055/6.846

    2.6648

    Group 4

    EN

    SF

    AG

    CEN

    JE

    NFMI

    6.3531

    7.5210

    1.7487

    5.848/12.71

    10.60/8.908

    0.9464

    6.3967

    7.7080

    1.6680

    6.021/12.72

    10.65/8.958

    0.9635

    6.4849

    7.7082

    1.7529

    6.246/12.75

    10.75/9.052

    0.9989

    Group 5

    EN

    SF

    AG

    CEN

    JE

    NFMI

    3.7859

    8.6920

    1.6906

    12.75/15.63

    5.768/4.910

    2.2131

    3.7733

    8.5561

    1.6821

    12.71/15.65

    5.748/4.893

    2.2188

    3.7878

    9.3739

    1.6934

    12.74/15.63

    6.262/5.685

    2.2303

    Table 2. Comparison of experimental data of different algorithms
    LevelHinder the scaleScore
    ExcellentObserve all diseases and identify types5
    GoodObserve all diseases and identify some types4
    ModerateObserve part of the disease and identify the type3
    PassObserve part of the disease but cannot distinguish the type2
    PoorUnable to observe the disease1
    Table 3. Subjective score of experts in cultural relic restoration
    GroupFusion-GAN-CLFFusion-GAN-MSFFProposed algorithm
    Group 143.84.7
    Group 24.24.44.8
    Group 33.83.94.4
    Group 43.63.44.2
    Group 54.23.94.6
    Table 4. Subjective evaluation results