• Laser & Optoelectronics Progress
  • Vol. 60, Issue 2, 0234001 (2023)
Meng Wu1,*, Jiao Wang1, and Jiankai Xiang2
Author Affiliations
  • 1College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
  • 2Shaanxi Institute for the Preservation of Cultural Heritage, Xi'an 710075, Shaanxi, China
  • show less
    DOI: 10.3788/LOP212843 Cite this Article Set citation alerts
    Meng Wu, Jiao Wang, Jiankai Xiang. Optimization Strategy for X-Ray Generation and Countermeasure Fusion of Bronze Mirror[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0234001 Copy Citation Text show less
    References

    [1] Maher M A. X-ray computed tomography of a late period falcon bronze coffin[J]. Radiation Physics and Chemistry, 166, 108475(2020).

    [2] Pollyceno L S, Ribeiro A D. Wave-particle duality using the Compton effect[J]. Physics Letters A, 384, 126808(2020).

    [3] Xiang J K, Wu M, Wang Z et al. Application of image enhancement in X-ray photography of cultural relics[J]. Laser & Optoelectronics Progress, 56, 063402(2019).

    [4] Bavirisetti D P, Xiao G, Zhao J H et al. Multi-scale guided image and video fusion: a fast and efficient approach[J]. Circuits, Systems, and Signal Processing, 38, 5576-5605(2019).

    [5] Tian S, Ren Y F, Shao X Y et al. Multi-focus image fusion with filter operator and double scale decomposition[J]. Laser & Optoelectronics Progress, 58, 0610010(2021).

    [6] Li W, Li Z M. NSST-based perception fusion method for infrared and visible images[J]. Laser & Optoelectronics Progress, 58, 2010014(2021).

    [7] Goodfellow I, Pouget-Abadie J, Mirza M et al. Generative adversarial networks[J]. Communications of the ACM, 63, 139-144(2020).

    [8] Zhan F N, Zhu H Y, Lu S J. Spatial fusion GAN for image synthesis[C], 3648-3657(2019).

    [9] Joo D, Kim D, Kim J. Generating a fusion image: one’s identity and another’s shape[C], 1635-1643(2018).

    [10] Ma J Y, Yu W, Liang P W et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 48, 11-26(2019).

    [11] Yang L D. Incremental nonnegative matrix factorization based on L2,1 sparse constraints[D](2019).

    [13] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).

    [14] Chen L C, Zhu Y K, Papandreou G et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018, 11211, 833-851(2018).

    [15] Mei Y Q, Fan Y C, Zhang Y L et al. Pyramid attention networks for image restoration[EB/OL]. https://arxiv.org/abs/2004.13824

    [16] Yang Z P, Xie K, Li T. Progressive multi-scale feature cascade fusion color constancy algorithm[J]. Acta Optica Sinica, 42, 0533002(2022).

    [17] Burt P J, Adelson E H. Merging images through pattern decomposition[J]. Proceedings of SPIE, 0575, 173-181(1985).

    [18] Mao X D, Li Q, Xie H R et al. Least squares generative adversarial networks[C], 2813-2821(2017).

    [19] Lai W S, Huang J B, Ahuja N et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C], 5835-5843(2017).

    [20] Ren L, Pan Z B, Cao J Z et al. Infrared and visible image fusion based on edge-preserving guided filter and infrared feature decomposition[J]. Signal Processing, 186, 108108(2021).

    [21] Wu R Q, Yu D Y, Liu J et al. An improved fusion method for infrared and low-light level visible image[C], 147-151(2017).

    [22] Sharma V, Hardeberg J Y, George S. RGB-NIR image enhancement by fusing bilateral and weighted least squares filters[J]. Journal of Imaging Science and Technology, 61, 040409(2017).