• Nano-Micro Letters
  • Vol. 16, Issue 1, 086 (2024)
Yongbiao Mu1,2,3,†, Shixiang Yu2,4,†, Yuzhu Chen2,†, Youqi Chu1,2,3,†..., Buke Wu1,2,3, Qing Zhang1,2,3, Binbin Guo2, Lingfeng Zou1,2,3, Ruijie Zhang2,3, Fenghua Yu1,2,3, Meisheng Han1,2,3, Meng Lin1,2,3,*, Jinglei Yang4,5,**, Jiaming Bai2,*** and Lin Zeng1,2,3,****|Show fewer author(s)
Author Affiliations
  • 1Shenzhen Key Laboratory of Advanced Energy Storage, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
  • 2Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
  • 3SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
  • 4Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Kowloon, 997077 Hong Kong Special Administrative Region of China, People’s Republic of China
  • 5HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01301-4 Cite this Article
    Yongbiao Mu, Shixiang Yu, Yuzhu Chen, Youqi Chu, Buke Wu, Qing Zhang, Binbin Guo, Lingfeng Zou, Ruijie Zhang, Fenghua Yu, Meisheng Han, Meng Lin, Jinglei Yang, Jiaming Bai, Lin Zeng. Highly Efficient Aligned Ion-Conducting Network and Interface Chemistries for Depolarized All-Solid-State Lithium Metal Batteries[J]. Nano-Micro Letters, 2024, 16(1): 086 Copy Citation Text show less
    References

    [1] M. Armand, J.-M. Tarascon, Building better batteries. Nature 451, 652–657 (2008).

    [2] Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim et al., Promises and challenges of next-generation beyond Li-ion batteries for electric vehicles and grid decarbonization. Chem. Rev. 121, 1623–1669 (2021).

    [3] M.S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004).

    [4] J.C. Bachman, S. Muy, A. Grimaud, H.H. Chang, N. Pour et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).

    [5] M. Dirican, C. Yan, P. Zhu, X. Zhang, Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng. R. Rep. 136, 27–46 (2019).

    [6] X. Fan, C. Zhong, J. Liu, J. Ding, Y. Deng et al., Opportunities of flexible and portable electrochemical devices for energy storage: expanding the spotlight onto semi-solid/solid electrolytes. Chem. Rev. 122, 17155–17239 (2022).

    [7] Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang et al., Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, e1705702 (2018).

    [8] J. Dai, C. Yang, C. Wang, G. Pastel, L. Hu, Interface engineering for garnet-based solid-state lithium-metal batteries: materials, structures, and characterization. Adv. Mater. 30, e1802068 (2018).

    [9] J. Zheng, M.S. Kim, Z. Tu, S. Choudhury, T. Tang et al., Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 49, 2701–2750 (2020).

    [10] B. Liu, J.-G. Zhang, W. Xu, Advancing lithium metal batteries. Joule 2, 833–845 (2018).

    [11] A. Banerjee, X. Wang, C. Fang, E. Wu, Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120, 6878–6933 (2020).

    [12] Y. Xiao, Y. Wang, S.-H. Bo, J.C. Kim, L.J. Miara et al., Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105–126 (2020).

    [13] X. Miao, S. Guan, C. Ma, L. Li, C.-W. Nan, Role of interfaces in solid-state batteries. Adv. Mater. 35(50), e2206402 (2022).

    [14] M. Du, K. Liao, Q. Lu, Z. Shao, Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy Environ. Sci. 12, 1780–1804 (2019).

    [15] Y. He, S. Chen, L. Nie, Z. Sun, X. Wu et al., Stereolithography three-dimensional printing solid polymer electrolytes for all-solid-state lithium metal batteries. Nano Lett. 20, 7136–7143 (2020).

    [16] X. Dong, A. Mayer, X. Liu, S. Passerini, D. Bresser, Single-ion conducting multi-block copolymer electrolyte for lithium-metal batteries with high mass loading NCM811 cathodes. ACS Energy Lett. 8, 1114–1121 (2023).

    [17] R. Xu, F. Liu, Y. Ye, H. Chen, R.R. Yang et al., A morphologically stable Li/electrolyte interface for all-solid-state batteries enabled by 3D-micropatterned garnet. Adv. Mater. 33, e2104009 (2021).

    [18] Q. Xia, Q. Zhang, S. Sun, F. Hussain, C. Zhang et al., Tunnel intergrowth Lix MnO2 nanosheet arrays as 3D cathode for high-performance all-solid-state thin film lithium microbatteries. Adv. Mater. 33, e2003524 (2021).

    [19] Y. Mu, Y. Chen, B. Wu, Q. Zhang, M. Lin et al., Dual vertically aligned electrode-inspired high-capacity lithium batteries. Adv. Sci. 9, e2203321 (2022).

    [20] T.-T. Zuo, X.-W. Wu, C.-P. Yang, Y.-X. Yin, H. Ye et al., Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv. Mater. 29, 1700389 (2017).

    [21] R. Zhang, S. Wen, N. Wang, K. Qin, E. Liu et al., N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes. Adv. Energy Mater. 8, 1800914 (2018).

    [22] Q. Yun, Y.-B. He, W. Lv, Y. Zhao, B. Li et al., Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 28, 6932–6939 (2016).

    [23] T.S. Wei, B.Y. Ahn, J. Grotto, J.A. Lewis, 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 30, e1703027 (2018).

    [24] S.-H. Park, P.J. King, R. Tian, C.S. Boland, J. Coelho et al., High areal capacity battery electrodes enabled by segregated nanotube networks. Nat. Energy 4, 560–567 (2019).

    [25] C. Chen, Y. Zhang, Y. Li, Y. Kuang, J. Song et al., Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors. Adv. Energy Mater. 7, 1700595 (2017).

    [26] D.W. McOwen, S. Xu, Y. Gong, Y. Wen, G.L. Godbey et al., 3D-printing electrolytes for solid-state batteries. Adv. Mater. 30, e1707132 (2018).

    [27] K. Lee, Y. Shang, V.A. Bobrin, R. Kuchel, D. Kundu et al., 3D printing nanostructured solid polymer electrolytes with high modulus and conductivity. Adv. Mater. 34, e2204816 (2022).

    [28] R. Elango, A. Demortière, V. De Andrade, M. Morcrette, V. Seznec, Thick binder-free electrodes for Li–ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity. Adv. Energy Mater. 8, 1703031 (2018).

    [29] J. Kang, Z. Yan, L. Gao, Y. Zhang, W. Liu et al., Improved ionic conductivity and enhancedinterfacial stability of solid polymer electrolytes with porous ferroelectric ceramic nanofibers. Energy Storage Mater. 53, 192–203 (2022).

    [30] J. Bae, Y. Li, J. Zhang, X. Zhou, F. Zhao et al., Cover picture: a 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57, 2007 (2018).

    [31] H. Xie, C. Yang, K.K. Fu, Y. Yao, F. Jiang et al., Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose. Adv. Energy Mater. 8, 1703474 (2018).

    [32] S. Zekoll, C. Marriner-Edwards, A.K. Ola Hekselman, J. Kasemchainan, C. Kuss et al., Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 11, 185–201 (2018).

    [33] S. Tang, W. Guo, Y. Fu, Advances in composite polymer electrolytes for lithium batteries and beyond. Adv. Energy Mater. 11, 2000802 (2021).

    [34] J. Pan, P. Zhao, N. Wang, F. Huang, S. Dou, Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes. Energy Environ. Sci. 15, 2753–2775 (2022).

    [35] X. Wang, H. Zhai, B. Qie, Q. Cheng, A. Li et al., Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte. Nano Energy 60, 205–212 (2019).

    [36] W. Tang, S. Tang, X. Guan, X. Zhang, Q. Xiang et al., High-performance solid polymer electrolytes filled with vertically aligned 2D materials. Adv. Funct. Mater. 29, 1900648 (2019).

    [37] J. Dai, K. Fu, Y. Gong, J. Song, C. Chen et al., Flexible solid-state electrolyte with aligned nanostructures derived from wood. ACS Mater. Lett. 1, 354–361 (2019).

    [38] X. Zhang, J. Xie, F. Shi, D. Lin, Y. Liu et al., Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett. 18, 3829–3838 (2018).

    [39] H. Zhang, X. An, Y. Yang, Y. Long, S. Nie et al., Vertical aligned solid-state electrolyte templated by nanostructured “upright” cellulose film layers for advanced cell performance. EcoMat 5, e12317 (2023).

    [40] Y. Nie, T. Yang, D. Luo, Y. Liu, Q. Ma et al., Tailoring vertically aligned inorganic-polymer nanocomposites with abundant lewis acid sites for ultra-stable solid-state lithium metal batteries. Adv. Energy Mater. 13, 2204218 (2023).

    [41] Z. Jiang, H. Xie, S. Wang, X. Song, X. Yao et al., Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries. Adv. Energy Mater. 8, 1801433 (2018).

    [42] R. Fang, B. Xu, N.S. Grundish, Y. Xia, Y. Li et al., Li2S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries. Angew. Chem. Int. Ed. 60, 17701–17706 (2021).

    [43] Y. Wei, T.-H. Liu, W. Zhou, H. Cheng, X. Liu et al., Enabling all-solid-state Li metal batteries operated at 30 ℃ by molecular regulation of polymer electrolyte. Adv. Energy Mater. 13, 2203547 (2023).

    [44] B. Xu, X. Li, C. Yang, Y. Li, N.S. Grundish et al., Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc. 143, 6542–6550 (2021).

    [45] J. Xu, J. Li, Y. Li, M. Yang, L. Chen et al., Long-life lithium-metal all-solid-state batteries and stable Li plating enabled by in situ formation of Li3 PS4 in the SEI layer. Adv. Mater. 34, e2203281 (2022).

    [46] Z. Zhang, J. Wang, S. Zhang, H. Ying, Z. Zhuang et al., Stable all-solid-state lithium metal batteries with Li3N-LiF-enriched interface induced by lithium nitrate addition. Energy Storage Mater. 43, 229–237 (2021).

    [47] V. Jabbari, V. Yurkiv, M.G. Rasul, A.H. Phakatkar, F. Mashayek et al., In situ formation of stable solid electrolyte interphase with high ionic conductivity for long lifespan all-solid-state lithium metal batteries. Energy Storage Mater. 57, 1–13 (2023).

    Yongbiao Mu, Shixiang Yu, Yuzhu Chen, Youqi Chu, Buke Wu, Qing Zhang, Binbin Guo, Lingfeng Zou, Ruijie Zhang, Fenghua Yu, Meisheng Han, Meng Lin, Jinglei Yang, Jiaming Bai, Lin Zeng. Highly Efficient Aligned Ion-Conducting Network and Interface Chemistries for Depolarized All-Solid-State Lithium Metal Batteries[J]. Nano-Micro Letters, 2024, 16(1): 086
    Download Citation