[1] Q Q SHEN, J B XUE, Y LI et al. Construction of CdSe polymorphic junctions with coherent interface for enhanced photoelectrocatalytic hydrogen generation. Applied Catalysis B: Environmental, 119552(2021).
[2] C J LI, Y XUE, X X ZHOU et al. BiZnx/Si photocathode: preparation and CO2 reduction performance. Journal of Inorganic Materials, 1093(2022).
[3] S Z XU, E A CARTER. Theoretical insights into heterogeneous (photo) electrochemical CO2 reduction. Chemical Reviews, 6631(2019).
[4] Q H PANG, G F LIAO, X Y HU et al. Porous bamboo charcoal/ TiO2 nanocomposites: preparation and photocatalytic property. Journal of Inorganic Materials, 219(2019).
[5] L HAO, H W HUANG, Y H ZHANG et al. Oxygen vacant semiconductor photocatalysts. Advanced Functional Materials, 2100919(2021).
[6] A W VERBRUGGEN, K MASSCHAELE, E MOORTGAT et al. Factors driving the activity of commercial titanium dioxide powders towards gas phase photocatalytic oxidation of acetaldehyde. Catalysis Science & Technology, 2311(2012).
[7] Q KERI, E KOCSIS, D A KARAJZ et al. Photocatalytic crystalline and amorphous TiO2 nanotubes prepared by electrospinning and atomic layer deposition. Molecules, 5917(2021).
[8] O BUNSHO, O YOSHIMASA, N SEIICHI. Photocatalytic activity of amorphous anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. Journal of Physical Chemistry B, 3746(1997).
[9] M BELLARDITA, A D PAOLA, B MEGNA et al. Absolute crystallinity and photocatalytic activity of brookite TiO2 samples. Applied Catalysis B: Environmental, 150(2017).
[10] S Q WANG, Z L ZHANG, W Y HUO et al. Preferentially oriented Ag-TiO2 nanotube array film: an efficient visible-light-driven photocatalyst. Journal of Hazardous Materials, 123016(2020).
[11] Z S DENG, J H JI, M Y XING et al. The role of oxygen defects in metal oxides for CO2 reduction. Nanoscale Advances, 4986(2020).
[12] W B JIANG, H Y LOH, B Q L LOW et al. Role of oxygen vacancy in metal oxides for photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 122079(2023).
[13] Y F JI, Y LUO. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2(101) surface: the essential role of oxygen vacancy. Journal of the American Chemical Society, 15896(2016).
[14] T ZHANG, J X LOW, J G YU et al. A blinking mesoporous TiO2-x composed of nanosized anatase with unusually long-lived trapped charge carriers. Angewandte Chemie International Edition, 15000(2020).
[15] J Q GAO, Q Q SHEN, R F GUAN et al. Oxygen vacancy self- doped black TiO2 nanotube arrays by aluminothermic reduction for photocatalytic CO2 reduction under visible light illumination. Journal of CO2 Utilization, 205(2020).
[16] J Q GAO, J B XUE, S F JIA et al. Self-doping surface oxygen vacancy-induced lattice strains for enhancing visible light-driven photocatalytic H2 evolution over black TiO2. ACS Applied Materials & Interfaces, 18758(2021).
[17] Y Y WANG, Y QU, B H QU et al. Construction of six-oxygen- coordinated single Ni sites on g-C3N4 with boron-oxo species for photocatalytic water-activation-induced CO2 reduction. Advanced Materials, 2105482(2021).
[18] Z Q WANG, J C ZHU, X L ZU et al. Selective CO2 photoreduction to CH4via Pdδ+-assisted hydrodeoxygenation over CeO2 nanosheets. Angewandte Chemie International Edition, e202203249(2022).
[19] W J ZHANG, Q Q SHEN, J B XUE et al. Preparation and photoelectrochemical water oxidation of hematite nanobelts containing highly ordered oxygen vacancies. Journal of Inorganic Materials, 1290(2021).
[20] L L WANG, T YANG, L J PENG et al. Dual transfer channels of photo-carriers in 2D/2D/2D sandwich-like ZnIn2S4/g-C3N4/Ti3C2 MXene S-scheme/Schottky heterojunction for boosting photocatalytic H2 evolution. Chinese Journal of Catalysis, 2720(2022).
[21] S C CAI, J CHEN, Q LI et al. Enhanced photocatalytic CO2 reduction with photothermal effect by cooperative effect of oxygen vacancy and Au cocatalyst. ACS Applied Materials & Interfaces, 14221(2021).
[22] Q J XIANG, K L LÜ, J G YU. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. Applied Catalysis B: Environmental, 557(2010).
[23] S MANIVANNAN, S AN, J JEONG et al. Hematite/M (M=Au, Pd) catalysts derived from a double-hollow Prussian blue microstructure: simultaneous catalytic reduction of o- and p-nitrophenols. ACS Applied Materials & Interfaces, 17557(2020).
[24] Y M ZHOU, Q X ZHANG, X L SHI et al. Photocatalytic reduction of CO2 into CH4 over Ru-doped TiO2: synergy of Ru and oxygen vacancies. Journal of Colloid and Interface Science, 2809(2022).
[25] M TAHIR, N S AMIN. Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Applied Catalysis B: Environmental, 98(2015).
[26] J PARK, H LIU, G X PIAO et al. Synergistic conversion of CO2 into C1 and C2 gases using hybrid In-doped TiO2 and g-C3N4 photocatalysts. Chemical Engineering Journal, 135388(2022).
[27] Q CHEN, X J CHEN, M L FANG et al. Photo-induced Au-Pd alloying at TiO2 {101} facets enables robust CO2 photocatalytic reduction into hydrocarbon fuels. Journal of Materials Chemistry A, 1334(2019).
[28] T WANG, L CHEN, C CHEN et al. Engineering catalytic interfaces in Cuδ+/CeO2-TiO2 photocatalysts forsynergistically boosting CO2 reduction to ethylene. ACS Nano, 2306(2022).
[29] C CAO, Y B YAN, Y L YU et al. Modification of Pd and Mn on the surface of TiO2 with enhanced photocatalytic activity for photoreduction of CO2 into CH4. The Journal of Physical Chemistry C, 270(2017).
[30] Y Z ZHU, Z X XU, W Y JIANG et al. Engineering on the edge of Pd nanosheet cocatalysts for enhanced photocatalytic reduction of CO2 to fuels. Journal of Materials Chemistry A, 2619(2017).
[31] M H YE, X WANG, E Z LIU et al. Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface- alkalinized titanium carbide MXene as cocatalyst. ChemSusChem, 1606(2018).
[32] B X NI, H JIANG, W Y GUO et al. Tailoring the oxidation state of metallic TiO through Ti3+/Ti2+ regulation for photocatalytic conversion of CO2 to C2H6. Applied Catalysis B: Environmental, 121141(2022).
[33] U ASCHAUER, R PFENNINGER, S M SELBACH et al. Strain- controlled oxygen vacancy formation and ordering in CaMnO3. Physical Review B, 054111(2013).
[34] Q Q LIU, X D HE, J J PENG et al. Hot-electron-assisted S- scheme heterojunction of tungsten oxide/graphitic carbon nitride for broad-spectrum photocatalytic H2 generation. Chinese Journal of Catalysis, 1478(2021).
[35] T YANG, P K DENG, L L WANG et al. Simultaneous photocatalytic oxygen production and hexavalent chromium reduction in Ag3PO4/C3N4 S-scheme heterojunction. Chinese Journal of Structural Chemistry, 2206023(2022).