• Journal of Inorganic Materials
  • Vol. 38, Issue 11, 1301 (2023)
Xin JIA1,2, Jinyu LI1,2, Shihao DING1,2, Qianqian SHEN1,2..., Husheng JIA1,2 and Jinbo XUE1,2,*|Show fewer author(s)
Author Affiliations
  • 11. Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
  • 22. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • show less
    DOI: 10.15541/jim20230170 Cite this Article
    Xin JIA, Jinyu LI, Shihao DING, Qianqian SHEN, Husheng JIA, Jinbo XUE. Synergy Effect of Pd Nanoparticles and Oxygen Vacancies for Enhancing TiO2 Photocatalytic CO2 Reduction [J]. Journal of Inorganic Materials, 2023, 38(11): 1301 Copy Citation Text show less
    References

    [1] Q Q SHEN, J B XUE, Y LI et al. Construction of CdSe polymorphic junctions with coherent interface for enhanced photoelectrocatalytic hydrogen generation. Applied Catalysis B: Environmental, 119552(2021).

    [2] C J LI, Y XUE, X X ZHOU et al. BiZnx/Si photocathode: preparation and CO2 reduction performance. Journal of Inorganic Materials, 1093(2022).

    [3] S Z XU, E A CARTER. Theoretical insights into heterogeneous (photo) electrochemical CO2 reduction. Chemical Reviews, 6631(2019).

    [4] Q H PANG, G F LIAO, X Y HU et al. Porous bamboo charcoal/ TiO2 nanocomposites: preparation and photocatalytic property. Journal of Inorganic Materials, 219(2019).

    [5] L HAO, H W HUANG, Y H ZHANG et al. Oxygen vacant semiconductor photocatalysts. Advanced Functional Materials, 2100919(2021).

    [6] A W VERBRUGGEN, K MASSCHAELE, E MOORTGAT et al. Factors driving the activity of commercial titanium dioxide powders towards gas phase photocatalytic oxidation of acetaldehyde. Catalysis Science & Technology, 2311(2012).

    [7] Q KERI, E KOCSIS, D A KARAJZ et al. Photocatalytic crystalline and amorphous TiO2 nanotubes prepared by electrospinning and atomic layer deposition. Molecules, 5917(2021).

    [8] O BUNSHO, O YOSHIMASA, N SEIICHI. Photocatalytic activity of amorphous anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. Journal of Physical Chemistry B, 3746(1997).

    [9] M BELLARDITA, A D PAOLA, B MEGNA et al. Absolute crystallinity and photocatalytic activity of brookite TiO2 samples. Applied Catalysis B: Environmental, 150(2017).

    [10] S Q WANG, Z L ZHANG, W Y HUO et al. Preferentially oriented Ag-TiO2 nanotube array film: an efficient visible-light-driven photocatalyst. Journal of Hazardous Materials, 123016(2020).

    [11] Z S DENG, J H JI, M Y XING et al. The role of oxygen defects in metal oxides for CO2 reduction. Nanoscale Advances, 4986(2020).

    [12] W B JIANG, H Y LOH, B Q L LOW et al. Role of oxygen vacancy in metal oxides for photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 122079(2023).

    [13] Y F JI, Y LUO. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2(101) surface: the essential role of oxygen vacancy. Journal of the American Chemical Society, 15896(2016).

    [14] T ZHANG, J X LOW, J G YU et al. A blinking mesoporous TiO2-x composed of nanosized anatase with unusually long-lived trapped charge carriers. Angewandte Chemie International Edition, 15000(2020).

    [15] J Q GAO, Q Q SHEN, R F GUAN et al. Oxygen vacancy self- doped black TiO2 nanotube arrays by aluminothermic reduction for photocatalytic CO2 reduction under visible light illumination. Journal of CO2 Utilization, 205(2020).

    [16] J Q GAO, J B XUE, S F JIA et al. Self-doping surface oxygen vacancy-induced lattice strains for enhancing visible light-driven photocatalytic H2 evolution over black TiO2. ACS Applied Materials & Interfaces, 18758(2021).

    [17] Y Y WANG, Y QU, B H QU et al. Construction of six-oxygen- coordinated single Ni sites on g-C3N4 with boron-oxo species for photocatalytic water-activation-induced CO2 reduction. Advanced Materials, 2105482(2021).

    [18] Z Q WANG, J C ZHU, X L ZU et al. Selective CO2 photoreduction to CH4via Pdδ+-assisted hydrodeoxygenation over CeO2 nanosheets. Angewandte Chemie International Edition, e202203249(2022).

    [19] W J ZHANG, Q Q SHEN, J B XUE et al. Preparation and photoelectrochemical water oxidation of hematite nanobelts containing highly ordered oxygen vacancies. Journal of Inorganic Materials, 1290(2021).

    [20] L L WANG, T YANG, L J PENG et al. Dual transfer channels of photo-carriers in 2D/2D/2D sandwich-like ZnIn2S4/g-C3N4/Ti3C2 MXene S-scheme/Schottky heterojunction for boosting photocatalytic H2 evolution. Chinese Journal of Catalysis, 2720(2022).

    [21] S C CAI, J CHEN, Q LI et al. Enhanced photocatalytic CO2 reduction with photothermal effect by cooperative effect of oxygen vacancy and Au cocatalyst. ACS Applied Materials & Interfaces, 14221(2021).

    [22] Q J XIANG, K L LÜ, J G YU. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. Applied Catalysis B: Environmental, 557(2010).

    [23] S MANIVANNAN, S AN, J JEONG et al. Hematite/M (M=Au, Pd) catalysts derived from a double-hollow Prussian blue microstructure: simultaneous catalytic reduction of o- and p-nitrophenols. ACS Applied Materials & Interfaces, 17557(2020).

    [24] Y M ZHOU, Q X ZHANG, X L SHI et al. Photocatalytic reduction of CO2 into CH4 over Ru-doped TiO2: synergy of Ru and oxygen vacancies. Journal of Colloid and Interface Science, 2809(2022).

    [25] M TAHIR, N S AMIN. Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Applied Catalysis B: Environmental, 98(2015).

    [26] J PARK, H LIU, G X PIAO et al. Synergistic conversion of CO2 into C1 and C2 gases using hybrid In-doped TiO2 and g-C3N4 photocatalysts. Chemical Engineering Journal, 135388(2022).

    [27] Q CHEN, X J CHEN, M L FANG et al. Photo-induced Au-Pd alloying at TiO2 {101} facets enables robust CO2 photocatalytic reduction into hydrocarbon fuels. Journal of Materials Chemistry A, 1334(2019).

    [28] T WANG, L CHEN, C CHEN et al. Engineering catalytic interfaces in Cuδ+/CeO2-TiO2 photocatalysts forsynergistically boosting CO2 reduction to ethylene. ACS Nano, 2306(2022).

    [29] C CAO, Y B YAN, Y L YU et al. Modification of Pd and Mn on the surface of TiO2 with enhanced photocatalytic activity for photoreduction of CO2 into CH4. The Journal of Physical Chemistry C, 270(2017).

    [30] Y Z ZHU, Z X XU, W Y JIANG et al. Engineering on the edge of Pd nanosheet cocatalysts for enhanced photocatalytic reduction of CO2 to fuels. Journal of Materials Chemistry A, 2619(2017).

    [31] M H YE, X WANG, E Z LIU et al. Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface- alkalinized titanium carbide MXene as cocatalyst. ChemSusChem, 1606(2018).

    [32] B X NI, H JIANG, W Y GUO et al. Tailoring the oxidation state of metallic TiO through Ti3+/Ti2+ regulation for photocatalytic conversion of CO2 to C2H6. Applied Catalysis B: Environmental, 121141(2022).

    [33] U ASCHAUER, R PFENNINGER, S M SELBACH et al. Strain- controlled oxygen vacancy formation and ordering in CaMnO3. Physical Review B, 054111(2013).

    [34] Q Q LIU, X D HE, J J PENG et al. Hot-electron-assisted S- scheme heterojunction of tungsten oxide/graphitic carbon nitride for broad-spectrum photocatalytic H2 generation. Chinese Journal of Catalysis, 1478(2021).

    [35] T YANG, P K DENG, L L WANG et al. Simultaneous photocatalytic oxygen production and hexavalent chromium reduction in Ag3PO4/C3N4 S-scheme heterojunction. Chinese Journal of Structural Chemistry, 2206023(2022).

    Xin JIA, Jinyu LI, Shihao DING, Qianqian SHEN, Husheng JIA, Jinbo XUE. Synergy Effect of Pd Nanoparticles and Oxygen Vacancies for Enhancing TiO2 Photocatalytic CO2 Reduction [J]. Journal of Inorganic Materials, 2023, 38(11): 1301
    Download Citation