• Nano-Micro Letters
  • Vol. 16, Issue 1, 036 (2024)
Wei Fan1,*, Qi Wang1, Kai Rong1, Yang Shi2..., Wanxi Peng3,**, Handong Li4, Zhanhu Guo4, Ben Bin Xu4, Hua Hou5, Hassan Algadi6 and Shengbo Ge2,***|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Functional Textile Material and Product of the Ministry of Education, School of Textile Science and Engineering, Institute of Flexible electronics and Intelligent Textile, Xi’an Polytechnic University, Xi’an 710048, People’s Republic of China
  • 2Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, People’s Republic of China
  • 3Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, People’s Republic of China
  • 4Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
  • 5College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, People’s Republic of China
  • 6Department of Electrical Engineering, Faculty of Engineering, Najran University, 11001 Najran, Saudi Arabia
  • show less
    DOI: 10.1007/s40820-023-01226-y Cite this Article
    Wei Fan, Qi Wang, Kai Rong, Yang Shi, Wanxi Peng, Handong Li, Zhanhu Guo, Ben Bin Xu, Hua Hou, Hassan Algadi, Shengbo Ge. MXene Enhanced 3D Needled Waste Denim Felt for High-Performance Flexible Supercapacitors[J]. Nano-Micro Letters, 2024, 16(1): 036 Copy Citation Text show less
    References

    [1] Z. Lin, X. Li, H. Zhang, B. Xu, P. Wasnik et al., Research progress of MXenes and layered double hydroxides for supercapacitors. Inorg. Chem. Front. 10, 4358–4392 (2023).

    [2] M. Pathak, C.S. Rout, Hierarchical NiCo2S4 nanostructures anchored on nanocarbons and Ti3C2Tx MXene for high-performance flexible solid-state asymmetric supercapacitors. Adv. Compos. Hybrid Mater. 5, 1404–1422 (2022).

    [3] J. Wang, H. Kang, H. Ma, Y. Liu, Z. Xie et al., Super-fast fabrication of MXene film through a combination of ion induced gelation and vacuum-assisted filtration. Eng. Sci. 15, 57–66 (2021)

    [4] S. Uzun, S. Seyedin, A.L. Stoltzfus, A.S. Levitt, M. Alhabeb et al., Knittable and washable multifunctional MXene-coated cellulose yarns. Adv. Funct. Mater. 29(45), 1905015 (2019).

    [5] A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32(8), 3480–3488 (2020).

    [6] J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020).

    [7] M.R. Lukatskaya, S. Kota, Z. Lin, M. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2(8), 17105 (2017).

    [8] S.A. Kazemi, Y. Wang, Super strong 2D titanium carbide MXene-based materials: a theoretical prediction. J. Phys. Con. Matter. 32(11), 11LT01 (2019).

    [9] Y. Wei, W. Luo, Z. Zhuang, B. Dai, J. Ding et al., Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances. Adv. Compos. Hybrid Mater. 4, 1082–1091 (2021).

    [10] L. Pu, J. Zhang, N. Jiresse, Y. Gao, H. Zhou et al., N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv. Compos. Hybrid Mater. 5, 356–369 (2022).

    [11] V.S. Sivasankarapillai, T.S.K. Sharma, K.H. Hwa, M. Wabaidur, S. Angaiah et al., MXene based sensing materials: current status and future perspectives. ES Energy Environ. 15, 4–14 (2022).

    [12] Y. Zhai, Y. Dou, D. Zhao, F.F. Pasquale, T.M. Richard et al., Carbon materials for chemical capacitive energy storage. Adv. Mater. 23(42), 4828–4850 (2011).

    [13] J. Liang, C. Jiang, W. Wu, Toward fiber-, paper-, and foam-based flexible solid-state supercapacitors: electrode materials and device designs. Nanoscale 11, 7041–7061 (2019).

    [14] J. Yan, Y. Ma, C. Zhang, X. Li, W. Liu et al., Polypyrrole-MXene coated textile-based flexible energy storage device. RSC Adv. 8(69), 39742–39748 (2018).

    [15] Z. Zhou, W. Panatdasirisuk, T.S. Mathis, B. Anasori, C. Lu et al., Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage. Nanoscale 10(13), 6005–60139 (2018).

    [16] M. Hu, Z. Li, G. Li, T. Hu, C. Zhang et al., All-solid-state flexible fiber-based MXene supercapacitors. Adv. Mater. Technol. 2(10), 1700143 (2017).

    [17] Q. Wang, Y. Yang, W. Chen, K. Rong, C. Zhang et al., Reliable coaxial wet spinning strategy to fabricate flexible MnO2-based fiber supercapacitors. J. Alloy. Compd. 935, 168110 (2023).

    [18] S. Zhen, G. Haocheng, Z. Chuan, Rational design of electrode–electrolyte interphase and electrolytes for rechargeable proton batteries. Nano-Micro Lett. 15, 96 (2023).

    [19] P. Jiang, F. Qi, Z. Yong, W. Xin, H. Lei et al., A bilayer high-temperature dielectric film with superior breakdown strength and energy storage density. Nano-Micro Lett. 15, 154 (2023).

    [20] L.V. Haule, C.M. Carr, M. Rigout, Preparation and physical properties of regenerated cellulose fibres from cotton waste garments. J. Clean. Prod. 112, 4445–4451 (2016).

    [21] L.J.R. Nunes, R. Godina, J.C.O. Matias, J.P.S. Cataldo, Economic and environmental benefits of using textile waste for the production of thermal energy. J. Clean. Prod. 171, 1353–1360 (2018).

    [22] L. Lu, W. Fan, X. Meng, L. Xue, S. Ge et al., Current recycling strategies and high-value utilization of waste cotton. Sci. Total. Environ. 856, 158798 (2023).

    [23] W.M. Qiao, M. Huda, Y. Song, S.H. Yoon, Y. Korai et al., Carbon fibers and films based on biomass resins. Energy Fuels 19(6), 2576–2582 (2005).

    [24] W. Xin, M. Tian, Y. Ge, Intrinsic self-healing chemistry for next-generation flexible energy storage devices. Nano-Micro Lett. 15, 99 (2023).

    [25] X. Meng, W. Fan, Y. Ma, T. Wei, H. Dou et al., Recycling of denim fabric wastes into high-performance composites using the needle-punching nonwoven fabrication route. Text. Res. J. 90(5–6), 695–709 (2020).

    [26] Y. Li, Z. Lu, B. Xin, Y. Liu, Y. Cui et al., All-solid-state flexible supercapacitor of carbonized MXene/cotton fabric for wearable energy storage. Appl. Surf. Sci. 528, 146975 (2020).

    [27] L. Wang, L. Chen, B. Yan, C. Wang, F. Zhu et al., In situ preparation of SnO2@polyaniline nanocomposites and their synergetic structure for high-performance supercapacitors. J. Mater. Chem. A 2, 8334–8341 (2014).

    [28] M. Seredych, C.E. Shuck, D. Pinto, M. Alhabeb, E. Precetti et al., High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chem. Mater. 31(9), 3324–3332 (2019).

    [29] M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017).

    [30] Y.B. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020).

    [31] L.A. Naslund, I. Persson, XPS spectra curve fittings of Ti3C2Tx based on first principles thinking. Appl. Surf. Sci. 593, 153442 (2022).

    [32] B. Yousefi, S. Mohammad, S. Saharkhiz, Z.K. Toussi, The effect of inner layer fiber diameter and fabric structure on transplanar water absorption and transfer of double-layered knitted fabrics. Fibers Polym. 22(2), 578–586 (2021).

    [33] A. Levitt, D. Hegh, P. Phillips, S. Uzun, M. Anayee et al., 3D knitted energy storage textiles using MXene-coated yarns. Mater. Today 34, 17–29 (2020).

    [34] M. Hu, T. Hu, R. Cheng, J. Yang, C. Cui et al., MXene-coated silk-derive d carbon cloth toward flexible electrode for supercapacitor application. J. Energy Chem. 27, 161–166 (2018).

    [35] Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8(13), 1703043 (2018).

    Wei Fan, Qi Wang, Kai Rong, Yang Shi, Wanxi Peng, Handong Li, Zhanhu Guo, Ben Bin Xu, Hua Hou, Hassan Algadi, Shengbo Ge. MXene Enhanced 3D Needled Waste Denim Felt for High-Performance Flexible Supercapacitors[J]. Nano-Micro Letters, 2024, 16(1): 036
    Download Citation