• Optical Instruments
  • Vol. 44, Issue 1, 63 (2022)
Xinlin YE and Guanjun YOU*
Author Affiliations
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.2022.01.010 Cite this Article
    Xinlin YE, Guanjun YOU. Terahertz near-field microscopic imaging study of monolayer MoS2 and WS2[J]. Optical Instruments, 2022, 44(1): 63 Copy Citation Text show less
    References

    [1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [2] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 7, 699-712(2012).

    [3] CONG C X, SHANG J Z, WANG Y L, et al. Optical properties of 2D semiconductor WS2[J]. Advanced Optical Materials, 6, 1700767(2018).

    [4] CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 5, 263-275(2013).

    [5] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 6, 147-150(2011).

    [6] LIU Y, WEISS N O, DUAN X D, et al. Van der Waals heterostructures and devices[J]. Nature Reviews Materials, 1, 16042(2016).

    [7] MAK K F, SHAN J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics, 10, 216-226(2016).

    [8] WANG X T, CUI Y, LI T, et al. Recent advances in the functional 2D photonic and optoelectronic devices[J]. Advanced Optical Materials, 7, 1801274(2019).

    [9] WITHERS F, DEL POZO-ZAMUDIO O, MISHCHENKO A, et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures[J]. Nature Materials, 14, 301-306(2015).

    [10] PU J, TAKENOBU T. Monolayer transition metal dichalcogenides as light sources[J]. Advanced Materials, 30, e1707627(2018).

    [11] CONNOLLY M R, PUDDY R K, LOGOTETA D, et al. Unraveling quantum Hall breakdown in bilayer graphene with scanning gate microscopy[J]. Nano Letters, 12, 5448-5454(2012).

    [12] ALMADORI Y, BENDIAB N, GRÉVIN B. Multimodal kelvin probe force microscopy investigations of a photovoltaic WSe2/MoS2 Type-II interface[J]. ACS Applied Materials & Interfaces, 10, 1363-1373(2018).

    [13] GIANNAZZO F, SONDE S, RAINERI V, et al. Screening length and quantum capacitance in graphene by scanning probe microscopy[J]. Nano Letters, 9, 23-29(2009).

    [14] YAMASUE K, CHO Y. Local carrier distribution imaging on few-layer MoS2 exfoliated on SiO2 by scanning nonlinear dielectric microscopy[J]. Applied Physics Letters, 112, 243102(2018).

    [15] TSAI Y, CHU Z D, HAN Y M, et al. Tailoring semiconductor lateral multijunctions for giant photoconductivity enhancement[J]. Advanced Materials, 29, 1703680(2017).

    [16] BERWEGER S, ZHANG H Y, SAHOO P K, et al. Spatially resolved persistent photoconductivity in MoS2–WS2 lateral heterostructures[J]. ACS Nano, 14, 14080-14090(2020).

    [17] CHU Z D, WANG C Y, QUAN J M, et al. Unveiling defect-mediated carrier dynamics in monolayer semiconductors by spatiotemporal microwave imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 13908-13913(2020).

    [18] CHEN X Z, HU D B, MESCALL R, et al. Modern scattering-type scanning near-field optical microscopy for advanced material research[J]. Advanced Materials, 31, 1804774(2019).

    [19] LIEWALD C, MASTEL S, HESLER J, et al. All-electronic terahertz nanoscopy[J]. Optica, 5, 159-163(2018).

    [20] ZHANG J W, CHEN X Z, MILLS S, et al. Terahertz nanoimaging of graphene[J]. ACS Photonics, 5, 2645-2651(2018).

    [21] CVITKOVIC A, OCELIC N, HILLENBRAND R. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy[J]. Optics Express, 15, 8550-8565(2007).

    [23] CHEN X, YANG Z B, FENG S Z, et al. How universal is the wetting aging in 2D materials[J]. Nano Letters, 20, 5670-5677(2020).

    [25] SPLENDIANI A, SUN L, ZHANG Y B, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 10, 1271-1275(2010).

    [26] ZENG H L, LIU G B, DAI J F, et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides[J]. Scientific Reports, 3, 1608(2013).

    [27] HONG J H, HU Z X, PROBERT M, et al. Exploring atomic defects in molybdenum disulphide monolayers[J]. Nature Communications, 6, 6239(2015).

    [28] EDELBERG D, RHODES D, KERELSKY A, et al. Approaching the intrinsic limit in transition metal diselenides via point defect control[J]. Nano Letters, 19, 4371-4379(2019).

    [29] CEBALLOS F, ZHAO H. Ultrafast laser spectroscopy of two-dimensional materials beyond graphene[J]. Advanced Functional Materials, 27, 1604509(2017).

    [30] LATURIA A, VAN DE PUT M L, VANDENBERGHE W G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk[J]. npj 2D Materials and Applications, 2, 6(2018).