[1] A Javan, W R Bennett, D R Herriott. Population inversion and continuous optical maser oscillation in a gas discharge containing a he-ne mixture. Phys Rev Lett, 6, 106-110(1961).
[2] A Javan, E A Ballik, W L Bond. Frequency Characteristics of a Continuous-Wave He–Ne Optical Maser. J Opt Soc Am, 52, 96-98(1962).
[3] H W Mocker, R J Collins. Mode competition and self-locking effects in Q-switched ruby laser. Appl Phy Lett, 7, 270-273(1965).
[4] R L Fork, B I Greene, C V Shank. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking. Appl Phy Lett, 38, 671-672(1981).
[5] D Strickland, G Mourou. Compression of amplified chirped optical pulses. Opt Commun, 55, 447-449(1985).
[6] M D Perry, D Pennington, B C Stuart. Petawatt laser pulses. Opt Lett, 24, 160-162(1999).
[7] D J Jones, S A Diddams, J K Ranka. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288, 635-639(2000).
[8] S A Diddams, K Vahala, T Udem. Optical frequency combs: Coherently uniting the electromagnetic spectrum. Science, 369, eaay3676(2020).
[9] S A Diddams, T Udem, J C Bergquist. An optical clock based on a single trapped 199Hg+ ion. Science, 293, 825-828(2001).
[10] S A Diddams, L Hollberg, V Mbele. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature, 445, 627-30(2007).
[11] M C Stowe, M J Thorpe, P Avi. Direct frequency comb spectroscopy. Adv At Mol Opt Phys, 55, 1-60(2008).
[12] S T Cundiff, A M Weiner. Optical arbitrary waveform generation. Nat Photonics, 4, 760-766(2010).
[13] A Bartels, S A Diddams, C W Oates. Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references. Opt. Lett., 30, 667-669(2005).
[14] T Wilken, G L Curto, R A Probst. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level. Nature, 485, 611-614(2012).
[15] T Sizer. Increase in laser repetition rate by spectral selection. IEEE J Quantum Elect, 25, 97-103(1989).
[16] Herr S, Steinmetz T, Wilken T, et al. Optical mode structure of a harmonically modelocked Yb femtosecond fiber laser[C]CLEO: 2011Laser Science to Photonic Applications. IEEE, 2011: 12.
[17] U Keller, K J Weingarten, F X Kartner. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J Sel Top Quant, 2, 435-453(1996).
[18] D E Spence, P N Kean, W Sibbett. 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser. Opt Lett, 16, 42-44(1991).
[19] A B Grudinin, S Gray. Passive harmonic mode locking in soliton fiber lasers. J Opt Soc Am B, 14, 144-154(1997).
[20] H W Yang, C Kim, S Y Choi. 1.2-GHz repetition rate, diode-pumped femtosecond Yb: KYW laser mode-locked by a carbon nanotube saturable absorber mirror. Opt Express, 20, 29518-29523(2012).
[21] https:yohei.issp.utokyo.ac.jpwksGHzLaser.html
[22] M Ramaswamy-Paye, J G Fujimoto. Compact dispersion-compensating geometry for Kerr-lens mode-locked femtosecond lasers. Opt Lett, 19, 1756-1758(1994).
[23] F X Kärtner, N Matuschek, T Schibli. Design and fabrication of double-chirped mirrors. Opt Lett, 22, 831-833(1997).
[24] C Hönninger, R Paschotta, F Morier-Genoud. Q-switching stability limits of continuous-wave passive mode locking. J Opt Soc Am B, 16, 46-56(1999).
[25] R Paschotta, L Krainer, S Lecomte. Picosecond pulse sources with multi-GHz repetition rates and high output power. New J Phys, 6, 174(2004).
[26] R Grange, M Haiml, R Paschotta. New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers. Appl Phys B, 80, 151-158(2005).
[27] A Klenner, U Keller. All-optical Q-switching limiter for high-power gigahertz modelocked diode-pumped solid-state lasers. Opt Express, 23, 8532-8544(2015).
[28] Ye J, Cundiff S T. Femtosecond Optical Frequency Comb: Principle, Operation Applications[M]. Switzerl: Springer Science & Business Media, 2005.
[29] K J Weingarten, D C Shannon, R W Wallace. Two-gigahertz repetition-rate, diode-pumped, mode-locked Nd: YLF laser. Opt Lett, 15, 962-964(1990).
[30] F Zhou, G P A Malcolm, A I Ferguson. 1-GHz repetition-rate frequency-modulation mode-locked neodymium lasers at 1.3 μm. Opt Lett, 16, 1101-1103(1991).
[31] K J Weingarten, A A Godil, M Gifford. FM mode-locking at 2.85 GHz using a microwave resonant optical modulator. IEEE Photonics Tech Lett, 4, 1106-1109(1992).
[32] P A Schulz, S R Henion. 5-GHz mode locking of a Nd: YLF laser. Opt Lett, 16, 1502-1504(1991).
[33] U Keller, D A B Miller, G D Boyd. Solid-state low-loss intracavity saturable absorber for Nd: YLF lasers: An antiresonant semiconductor Fabry–Perot saturable absorber. Opt Lett, 17, 505-507(1992).
[34] L Krainer, R Paschotta, S Lecomte. Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz. IEEE J Quantum Elect, 38, 1331-1338(2002).
[35] A Bartels, T Dekorsy, H Kurz. Femtosecond Ti: sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy. Opt Lett, 24, 996-998(1999).
[36] T M Fortier, A Bartels, S A Diddams. Octave-spanning Ti: sapphire laser with a repetition rate > 1 GHz for optical frequency measurements and comparisons. Opt Lett, 31, 1011-1013(2006).
[37] A Bartels, R Gebs, M S Kirchner. Spectrally resolved optical frequency comb from a self-referenced 5 GHz femtosecond laser. Opt Lett, 32, 2553-2555(2007).
[38] A Bartels, D Heinecke, S A Diddams. 10-GHz self-referenced optical frequency comb. Science, 326, 681-681(2009).
[39] M Lezius, T Wilken, C Deutsch. Space-borne frequency comb metrology. Optica, 3, 1381-1387(2016).
[40] A Martinez, S Yamashita. Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes. Opt Express, 19, 6155-6163(2011).
[41] M T Murphy, T Udem, R Holzwarth. High-precision wavelength calibration of astronomical spectrographs with laser frequency combs. Mon Not R Astron Soc, 380(2007).
[42] C H Li, A J Benedick, P Fendel. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s −1. Nature, 452, 610-612(2008).
[43] T Steinmetz, T Wilken. Laser frequency combs for astronomical observations. Science, 321, 1335(2008).
[44] 朱江峰, Jiangfeng Zhu, 田文龙, Wenlong Tian, 高子叶, Ziye Gao. Diode pumped all-solid-state femtosecond Yb laser oscillator. Chinese Journal Lasers, 44, 0900001(2017).
[45] Yamazoe S, Katou M, Kasamatsu T. Ultracompact Laserdiodepumped Femtosecond Solidstate Laser[ZOL]. [20200616] https:www.fujifilm.comaboutresearchrept054pdfindexff_rd054_009_en.pdf.
[46] S Yamazoe, M Katou, T Adachi. Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb3+: KY (WO4)2 solid-state laser with a semiconductor saturable absorber mirror. Opt Lett, 35, 748-750(2010).
[47] S Pekarek, C Fiebig, M C Stumpf. Diode-pumped gigahertz femtosecond Yb: KGW laser with a peak power of 3.9 kW. Opt Express, 18, 16320-16326(2010).
[48] S Pekarek, T Südmeyer, S Lecomte. Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser. Opt Express, 19, 16491-16497(2011).
[49] G Genty, S Coen, J M Dudley. Fiber supercontinuum sources. J Opt Soc Am B, 24, 1771-1785(2007).
[50] Pekarek S, Stumpf M C, Lecomte S, et al. Compact gigahertz frequency comb generation: how sht do the pulses need to be[C]ASSP Optical Society of America, 2012: AT5A. 2.
[51] S Pekarek, A Klenner, T Südmeyer. Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz. Opt Express, 20, 4248-4253(2012).
[52] A Klenner, M Golling, U Keller. A gigahertz multimode-diode-pumped Yb: KGW enables a strong frequency comb offset beat signal. Opt Express, 21, 10351-10357(2013).
[53] J Petit, P Goldner, B Viana. Laser emission with low quantum defect in Yb: CaGdAlO4. Opt Lett, 30, 1345-1347(2005).
[54] Klenner A, Golling M, Keller U. Compact gigahertz frequency combs[C]ASSL Optical Society of America, 2013: ATh3A. 1.
[55] A Klenner, M Golling, U Keller. High peak power gigahertz Yb: CALGO laser. Opt Express, 22, 11884-11891(2014).
[56] Klenner A, Golling M, Keller U. Gigahertz diodepumped Yb: CALGO laser with 60fs pulses an average output power of 3.5 W [C]CLEOLaser Science to Photonic Applications. IEEE, 2014: 12.
[57] A S Mayer, C R Phillips, U Keller. Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal. Nat Commun, 8, 1-8(2017).
[58] D Waldburger, A S Mayer, C G E Alfieri. Tightly locked optical frequency comb from a semiconductor disk laser. Opt Express, 27, 1786-1797(2019).
[59] L M Krüger, A S Mayer, Y Okawachi. Performance scaling of a 10-GHz solid-state laser enabling self-referenced CEO frequency detection without amplification. Opt Express, 28, 12755-12770(2020).
[60] P Wasylczyk, P Wnuk, C Radzewicz. Passively modelocked, diode-pumped Yb: KYW femtosecond oscillator with 1 GHz repetition rate. Opt Express, 17, 5630-5636(2009).
[61] Endo M, Ozawa A, Kobayashi Y. Kerrlens modelocked Yb: KYW laser at 3.3GHz repetition rate[C]CLEO Optical Society of America, 2012: CF3L. 2.
[62] Kobayashi Y, Nomura Y, Watanabe S. 1.3GHz, 20W, femtosecond chirpedpulse amplifier system[C]CLEO Optical Society of America, 2010: CMN3.
[63] M Endo, A Ozawa, Y Kobayashi. Kerr-lens mode-locked Yb: KYW laser at 4.6-GHz repetition rate. Opt Express, 20, 12181-12197(2012).
[64] Y Senatsky, A Shirakawa, Y Sato. Nonlinear refractive index of ceramic laser media and perspectives of their usage in a high-power laser-driver. Laser Phys Lett, 1, 500-506(2004).
[65] K V Yumashev, N N Posnov, P V Prokoshin. Z-scan measurements of nonlinear refraction and Kerr-lens mode-locking with Yb3+: KY(WO4)2. Opt Quant Electron, 32, 43-48(2000).
[66] Endo M, Ozawa A, Sukegawa T, et al. 5.2GHz, Kerrlens modelocked Yb: Lu2O3 ceramic laser f combresolved broadb spectroscopy. [C]CLEO OSA Technical Digest (online), 2013: CTu1I. 3.
[67] M Endo, A Ozawa, Y Kobayashi. 6-GHz, Kerr-lens mode-locked Yb: Lu2O3 ceramic laser for comb-resolved broadband spectroscopy. Opt Lett, 38, 4502-4505(2013).
[68] M Endo, I Ito, Y Kobayashi. Direct 15-GHz mode-spacing optical frequency comb with a Kerr-lens mode-locked Yb: Y2O3 ceramic laser. Opt Express, 23, 1276-1282(2015).
[69] S Kimura, S Tani, Y Kobayashi. Kerr-lens mode locking above a 20 GHz repetition rate. Optica, 6, 532-533(2019).
[70] Z Qing, Z Yanying, W Zhiyi. Sub-10 fs laser pulses with repetition rate of 1.1 GHz by a Ti: sapphire oscillator. Chinese Sci Bull, 20, 3649-3652(2009).
[71] Chen Li, Yuxuan Ma, Xiang Gao. 1 GHz repetition rate femtosecond Yb: fiber laser for direct generation of carrier-envelope offset frequency. Appl Optics, 54, 8350-8353(2015).
[72] Wenlong Wang, Wei Lin, Huihui Cheng. Gain-guided soliton: Scaling repetition rate of passively modelocked Yb-doped fiber lasers to 12.5 GHz. Opt Express, 27, 10438-10448(2019).
[73] A Major, I Nikolakakos, J S Aitchison. Characterization of the nonlinear refractive index of the laser crystal Yb: KGd(WO4)2. Appl Phys B, 77, 433-436(2003).
[74] R A McCracken, J M Charsley, D T Reid. A decade of astrocombs: recent advances in frequency combs for astronomy. Opt Express, 25, 15058-15078(2017).
[75] International Telecommunication Union. 20150912. IMT Vision—Framewk overall objectives of the future development of IMT f 2020 beyond. ITUR, M20830[EBOL]. https:www.itu.intdms_pubreciturrecmRRECM.20830201509I!!PDFE.pdf
[76] I Tomohiro, A A Eilanlou, N Yasuo. Kerr lens mode-locked Yb: Lu2O3 bulk ceramic oscillator pumped by a multimode laser diode. Jpn J Appl Phys., 54, 072703(2015).
[77] W L Tian, C Yu, J F Zhu, D C Zhang. Diode-pumped high-power sub-100 fs Kerr-lens mode-locked Yb: CaYAlO4 laser with 1.85 MW peak power. Opt Express, 27, 21448-21454(2019).