• Laser & Optoelectronics Progress
  • Vol. 62, Issue 4, 0437007 (2025)
Yabo Liu1,*, Xiaoquan Yang2, and Tao Jiang2
Author Affiliations
  • 1School of Biomedical Engineering, Hainan University, Haikou 570228, Hainan , China
  • 2Suzhou Brain Space Information Research Institute, Huazhong University of Science and Technology, Suzhou 215000, Jiangsu , China
  • show less
    DOI: 10.3788/LOP241492 Cite this Article Set citation alerts
    Yabo Liu, Xiaoquan Yang, Tao Jiang. High Dynamic Range Image Compression Based on a Multi-Scale Feature Network[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0437007 Copy Citation Text show less
    References

    [1] Varki A, Altheide T K. Comparing the human and chimpanzee genomes: searching for needles in a haystack[J]. Genome Research, 15, 1746-1758(2005).

    [2] Feng G P, Jensen F E, Greely H T et al. Opportunities and limitations of genetically modified nonhuman primate models for neuroscience research[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 24022-24031(2020).

    [3] Lu Y H, Cui Y, Cao L et al. Macaque brainnetome atlas: a multifaceted brain map with parcellation, connection, and histology[J]. Science Bulletin, 69, 2241-2259(2024).

    [4] Yan M C, Yu W W, Lü Q et al. Mapping brain-wide excitatory projectome of primate prefrontal cortex at submicron resolution and comparison with diffusion tractography[J]. eLife, 11, e72534(2022).

    [5] Gardner M B, Luciw P A. Macaque models of human infectious disease[J]. ILAR Journal, 49, 220-255(2008).

    [6] Park J, Wang J, Guan W et al. Integrated platform for multiscale molecular imaging and phenotyping of the human brain[J]. Science, 384, eadh9979(2024).

    [7] Li A N, Gong H, Zhang B et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain[J]. Science, 330, 1404-1408(2010).

    [8] Zhou C, Yang X Q, Wu S H et al. Continuous subcellular resolution three-dimensional imaging on intact macaque brain[J]. Science Bulletin, 67, 85-96(2022).

    [9] Jiang T, Gong H, Yuan J. Whole-brain optical imaging: a powerful tool for precise brain mapping at the mesoscopic level[J]. Neuroscience Bulletin, 39, 1840-1858(2023).

    [10] Jiang T, Gong H, Luo Q M et al. Whole-brain optical imaging[J]. Chinese Journal of Lasers, 50, 0307101(2023).

    [11] Li A N, Guan Y, Gong H et al. Challenges of processing and analyzing big data in mesoscopic whole-brain imaging[J]. Genomics, 17, 337-343(2019).

    [12] Wang Z, Simoncelli E P, Bovik A C. Multiscale structural similarity for image quality assessment[C], 1398-1402(2003).

    [13] Ballé J, Laparra V, Simoncelli E P. End-to-end optimized image compression[EB/OL]. https://arxiv.org/abs/1611.01704v3

    [14] Ballé J, Minnen D, Singh S et al. Variational image compression with a scale hyperprior[EB/OL]. https://arxiv.org/abs/1802.01436v2

    [15] Minnen D, Ballé J, Toderici G. Joint autoregressive and hierarchical priors for learned image compression[EB/OL]. https://arxiv.org/abs/1809.02736v1

    [16] Cheng Z X, Sun H M, Takeuchi M et al. Learned image compression with discretized Gaussian mixture likelihoods and attention modules[C], 7936-7945(2020).

    [17] Minnen D, Singh S. Channel-wise autoregressive entropy models for learned image compression[C], 3339-3343(2020).

    [18] He D L, Yang Z M, Peng W K et al. ELIC: efficient learned image compression with unevenly grouped space-channel contextual adaptive coding[C], 5708-5717(2022).

    [19] Bengio Y, Léonard N, Courville A C. Estimating or propagating gradients through stochastic neurons for conditional computation[EB/OL]. https://arxiv.org/abs/1308.3432

    [20] Ballé J, Laparra V, Simoncelli E P. Density modeling of images using a generalized normalization transformation[EB/OL]. https://arxiv.org/abs/1511.06281

    [21] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).