• Optical Instruments
  • Vol. 46, Issue 4, 56 (2024)
Mingtong CHEN, Canyu LIU, and Guanjun YOU*
Author Affiliations
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.202304040084 Cite this Article
    Mingtong CHEN, Canyu LIU, Guanjun YOU. Fluoride ions in situ passivation for thermally stable CsPbBr3 nanocrystals[J]. Optical Instruments, 2024, 46(4): 56 Copy Citation Text show less
    References

    [1] KOVALENKO M V, PROTESESCU L, BODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals[J]. Science, 358, 745-750(2017).

    [2] TALAPIN D V, LEE J S, KOVALENKO M V et al. Prospects of colloidal nanocrystals for electronic and optoelectronic applications[J]. Chemical Reviews, 110, 389-458(2010).

    [3] KOJIMA A, TESHIMA K, SHIRAI Y et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the american chemical society, 131, 6050-6051(2009).

    [4] YANG W S, PARK B W, JUNG E H et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells[J]. Science, 356, 1376-1379(2017).

    [5] AKKERMAN Q A, D’INNOCENZO V, ACCORNERO S et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions[J]. Journal of the American Chemical Society, 137, 10276-10281(2015).

    [6] KANG J, WANG L W. High defect tolerance in lead halide perovskite CsPbBr3[J]. The Journal of Physical Chemistry Letters, 8, 489-493(2017).

    [7] XIE Z R, LI X J, LI R F et al. In situ confined growth of ultrasmall perovskite quantum dots in metal–organic frameworks and their quantum confinement effect[J]. Nanoscale, 12, 17113-17120(2020).

    [8] SHAMSI J, URBAN A S, IMRAN M et al. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties[J]. Chemical Reviews, 119, 3296-3348(2019).

    [9] ZHENG X P, TROUGHTON J, GASPARINI N et al. Quantum dots supply bulk- and surface-passivation agents for efficient and stable perovskite solar cells[J]. Joule, 3, 1963-1976(2019).

    [10] BURSCHKA J, PELLET N, MOON S J et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 499, 316-319(2013).

    [11] TAN Z K, MOGHADDAM R S, LAI M L et al. Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 9, 687-692(2014).

    [12] YANTARA N, BHAUMIK S, YAN F et al. Inorganic halide perovskites for efficient light-emitting diodes[J]. The Journal of Physical Chemistry Letters, 6, 4360-4364(2015).

    [13] YAN D D, SHI T C, ZANG Z G et al. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification[J]. Small, 15, 1901173(2019).

    [14] ZHANG Y P, LIU J Y, WANG Z Y et al. Synthesis, properties, and optical applications of low-dimensional perovskites[J]. Chemical Communications, 52, 13637-13655(2016).

    [15] SINGH R K, CHEN L H, SINGH A et al. Progress of backlight devices: emergence of halide perovskite quantum dots/nanomaterials[J]. Frontiers in Nanotechnology, 4, 863312(2022).

    [16] PALAZON F, DI STASIO F, LAUCIELLO S et al. Evolution of CsPbBr3 nanocrystals upon post-synthesis annealing under an inert atmosphere[J]. Journal of Materials Chemistry C, 4, 9179-9182(2016).

    [17] CONINGS B, DRIJKONINGEN J, GAUQUELIN N et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite[J]. Advanced Energy Materials, 5, 1500477(2015).

    [18] CAI M H, ZHANG D D, XU J Y et al. Unveiling the role of langevin and trap-assisted recombination in long lifespan OLEDs employing thermally activated delayed fluorophores[J]. ACS Applied Materials & Interfaces, 11, 1096-1108(2019).

    [19] LUO H, GUO S H, ZHANG Y B et al. Regulating exciton-phonon coupling to achieve a near-unity photoluminescence quantum yield in one-dimensional hybrid metal halides[J]. Advanced Science, 8, 2100786(2021).

    [20] ZHANG F, ZHONG H Z, CHEN C et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology[J]. ACS Nano, 9, 4533-4542(2015).

    [21] LI X M, WU Y, ZHANG S L et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Advanced Functional Materials, 26, 2435-2445(2016).

    [22] DIRIN D N, PROTESESCU L, TRUMMER D et al. Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes[J]. Nano Letters, 16, 5866-5874(2016).

    [23] ZHANG Q, LI Z C, LIU M M et al. Bifunctional passivation strategy to achieve stable CsPbBr3 nanocrystals with drastically reduced thermal-quenching[J]. The Journal of Physical Chemistry Letters, 11, 993-999(2020).

    [24] LIU M M, WAN Q, WANG H M et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes[J]. Nature Photonics, 15, 379-385(2021).

    [25] SHAMSI J, KUBICKI D, ANAYA M et al. Stable hexylphosphonate-capped blue-emitting quantum-confined CsPbBr3 nanoplatelets[J]. ACS Energy Letters, 5, 1900-1907(2020).

    [26] WANG N, CHENG L, GE R et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells[J]. Nature Photonics, 10, 699-704(2016).

    [27] SILLEN A, ENGELBORGHS Y. The correct use of “average” fluorescence parameters[J]. Photochemistry and Photobiology, 67, 475-486(1998).

    [28] CHIRVONY V S, GONZÁLEZ-CARRERO S, SUÁREZ I et al. Delayed luminescence in lead halide perovskite nanocrystals[J]. The Journal of Physical Chemistry C, 121, 13381-13390(2017).