• Laser & Optoelectronics Progress
  • Vol. 56, Issue 4, 040002 (2019)
Yong Li1, Guofeng Tong1,*, Jingchao Yang2, Liqiang Zhang3,**..., Hao Peng1 and Huashuai Gao1|Show fewer author(s)
Author Affiliations
  • 1 College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
  • 2 Department of Electrical and Information Engineering, Hebei Jiaotong Vocational and Technical College, Shijiazhuang, Hebei 0 50091, China
  • 3 The State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China
  • show less
    DOI: 10.3788/LOP56.040002 Cite this Article Set citation alerts
    Yong Li, Guofeng Tong, Jingchao Yang, Liqiang Zhang, Hao Peng, Huashuai Gao. 3D Point Cloud Scene Data Acquisition and Its Key Technologies for Scene Understanding[J]. Laser & Optoelectronics Progress, 2019, 56(4): 040002 Copy Citation Text show less
    References

    [1] Kim B S, Kohli P, Savarese S. 3D scene understanding by voxel-CRF. [C]∥2013 IEEE International Conference on Computer Vision, December 1-8, 2013, Sydney, NSW, Australia. New York: IEEE, 1425-1432(2013).

    [2] Zhuang Y, He G J, Hu H S et al. A novel outdoor scene-understanding framework for unmanned ground vehicles with 3D laser scanners[J]. Transactions of the Institute of Measurement and Control, 37, 435-445(2015).

    [3] Tong G F, Du X C, Li Y et al. Three-dimensional point cloud classification of large outdoor scenes based on vertical slice sampling and centroid distance histograms[J]. Chinese Journal of Lasers, 45, 1004001(2018).

    [4] Yan F, Zhuang Y, Wang W. Outdoor scene comprehension of mobile robot based on multi-sensor information fusion[J]. Control Theory & Applications, 28, 1093-1098(2011).

    [5] Izadi S, Kim D, Hilliges O et al. KinectFusion : real-time 3D reconstruction and interaction using a moving depth camera. [C]∥Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, October 16-19, 2011. Santa Barbara, California, USA. New York: ACM, 559-568(2011).

    [6] Lu X S, Yu J Y, Tian M Y et al. Fusion method of vehicle laser point cloud and serialized panoramic image[J]. Chinese Journal of Lasers, 45, 0510004(2018).

    [7] Bircher A, Alexis K, Burri M et al. Structural inspection path planning via iterative viewpoint resampling with application to aerial robotics. [C]∥IEEE International Conference on Robotics and Automation (ICRA), May 26-30, 2015, Seattle, WA, USA. New York: IEEE, 6423-6430(2015).

    [8] Hackel T, Savinov N, Ladicky L et al. Semantic 3D. net: a new large-scale point cloud classification benchmark[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 91-98(2017). http://arxiv.org/abs/1704.03847

    [9] Landrieu L, Simonovsky M. Large-scale point cloud semantic segmentation with superpoint graphs. [C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 19-21, 2018, Salt Lake City, Utah, USA. New York: IEEE, 4558-4567(2018).

    [10] Silberman N, Hoiem D, Kohli P et al. Indoor segmentation and support inference from RGBD images. [C]∥European Conference on Computer Vision. Berlin, Heidelberg: Springer, 746-760(2012).

    [11] Song S R, Lichtenberg S P, Xiao J X. SUN RGB-D: a RGB-D scene understanding benchmark suite. [C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 567-576(2015).

    [12] Chen C J, Wang G, panorama images: CN202782968U[P]. -03-13(2013).

    [14] Pomerleau F, Liu M, Colas F et al. Challenging data sets for point cloud registration algorithms[J]. The International Journal of Robotics Research, 31, 1705-1711(2012). http://dl.acm.org/citation.cfm?id=2421554

    [15] Sydney urban objects dataset[EB/OL]. -11-04)[2018-07-18] http:∥www. acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml.(2013).

    [16] Wu Z, Song S, Khosla A et al. 3D shapeNets: A deep representation for volumetric shapes. [C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 23-28, 2014, Columbus, OH, USA. New York: IEEE, 1912-1920(2014).

    [17] Johnson A E. Spin-images: a representation for 3-D surface matching[D]. Pennsylvania: Carnegie Mellon University(1997).

    [18] Frome A, Huber D, Kolluri R et al. Recognizing objects in range data using regional point descriptors. [C]∥European Conference on Computer Vision. Berlin, Heidelberg: Springer, 224-237(2004).

    [19] Rusu R B, Blodow N, Marton Z C et al. Aligning point cloud views using persistent feature histograms. [C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems, September 22-26, 2008, Nice, France. New York: IEEE, 3384-3391(2008).

    [20] Salti S, Tombari F, Di Stefano L. SHOT: unique signatures of histograms for surface and texture description[J]. Computer Vision and Image Understanding, 125, 251-264(2014). http://www.sciencedirect.com/science/article/pii/S1077314214000988

    [21] Wohlkinger W, Vincze M. Ensemble of shape functions for 3D object classification. [C]∥IEEE International Conference on Robotics and Biomimetics, December 7-11, 2011, Karon Beach, Phuket, Thailand. New York: IEEE, 2987-2992(2011).

    [22] Rusu R B, Bradski G, Thibaux R et al. Fast 3D recognition and pose using the viewpoint feature histogram. [C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, 2010, Taipei, Taiwan, China. New York: IEEE, 2155-2162(2010).

    [23] Rusu R B, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration. [C]∥IEEE International Conference on Robotics and Automation, May 12-17, 2009, Kobe, Japan, New York: IEEE, 3212-3217(2009).

    [24] Sappa A D, Devy M. Fast range image segmentation by an edge detection strategy. [C]∥Proceedings Third International Conference on 3-D Digital Imaging and Modeling, May 28-June 1, 2001, Quebec City, Quebec, Canada. New York: IEEE, 292-299(2001).

    [25] Ke Y L, Shan D R. Edge-based segmentation of point cloud data[J]. Journal of Zhejiang University (Engineering Science), 39, 377-380(2005).

    [26] Papon J, Abramov A, Schoeler M et al. Voxel cloud connectivity segmentation-supervoxels for point clouds. [C]∥IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2013, Portland, OR, USA. New York: IEEE, 2027-2034(2013).

    [27] Vo A V, Truong-Hong L, Laefer D F et al. Octree-based region growing for point cloud segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 88-100(2015). http://www.sciencedirect.com/science/article/pii/s0924271615000283

    [28] Yang Z X, Cheng X J, Li Q et al. Segmentation of point cloud in tank of plane bulkhead type[J]. Chinese Journal of Lasers, 44, 1010006(2017).

    [29] Wang Y M, Shi H B. A segmentation method for point cloud based on local sample and statistic inference[M]. ∥Bian F L, Xie Y C. eds. Geo-Informatics in Resource Management and Sustainable Ecosystem. Berlin, Heidelberg: Springer, 274-282(2015).

    [30] Green W R, Grobler H. Normal distribution transform graph-based point cloud segmentation. [C]∥Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference, November 26-27, 2015, Port Elizabeth, South Africa. New York: IEEE, 54-59(2015).

    [31] Yang J Y, Gan Z Q, Li K et al. Graph-based segmentation for RGB-D data using 3-D geometry enhanced superpixels[J]. IEEE Transactions on Cybernetics, 45, 913-926(2015). http://ieeexplore.ieee.org/document/6867332/

    [32] Cheng X J, Cheng X L, Hu M J et al. Buildings detection and contour extraction by fusion of aerial images and LIDAR point cloud[J]. Chinese Journal of Lasers, 43, 0514002(2016).

    [33] Wolf D, Prankl J, Vincze M. Fast semantic segmentation of 3D point clouds using a dense CRF with learned parameters. [C]∥IEEE International Conference on Robotics and Automation (ICRA), May 26-30, 2015, Seattle, WA, USA. New York: IEEE, 4867-4873(2015).

    [34] Hackel T, Wegner J D, Schindler K. Fast semantic segmentation of 3D point clouds with strongly varying density[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 3, 177-184(2016). http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016ISPAnIII3..177H&link_type=ABSTRACT

    [35] Weinmann M, Jutzi B, Hinz S et al. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 286-304(2015). http://www.sciencedirect.com/science/article/pii/S0924271615000349

    [36] Xiang B B, Yao J, Lu X H et al. Segmentation-based classification for 3D urban point clouds. [C]∥IEEE International Conference on Information and Automation (ICIA), August 1-3, 2016, Ningbo, China. New York: IEEE, 172-177(2016).

    [37] Aijazi A K, Checchin P, Trassoudaine L. Segmentation based classification of 3D urban point clouds: a super-voxel based approach with evaluation[J]. Remote Sensing, 5, 1624-1650(2013).

    [38] Ghamisi P, Höfle B. LiDAR data classification using extinction profiles and a composite kernel support vector machine[J]. IEEE Geoscience and Remote Sensing Letters, 14, 659-663(2017). http://ieeexplore.ieee.org/document/7873288/

    [39] Lodha S K, Fitzpatrick D M, Helmbold D P. Aerial lidar data classification using AdaBoost. [C]∥Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007), August 21-23, 2007, Montreal, QC, Canada. New York: IEEE, 435-442(2007).

    [40] Ni H, Lin X G, Zhang J X. Classification of ALS point cloud with improved point cloud segmentation and random forests[J]. Remote Sensing, 9, 288(2017). http://adsabs.harvard.edu/abs/2017RemS....9..288N

    [41] Niemeyer J, Rottensteiner F, Soergel U. Classification of urban LiDAR data using conditional random field and random forests. [C]∥Joint Urban Remote Sensing Event 2013, April 21-23, 2013, Sao Paulo, Brazil. New York: IEEE, 139-142(2013).

    [42] Su H, Maji S, Kalogerakis E et al. Multi-view convolutional neural networks for 3D shape recognition. [C]∥IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 945-953(2015).

    [43] Qi C R, Su H, Nießner M et al. Volumetric and multi-view CNNs for object classification on 3D data. [C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30,2016, Las Vegas, NV, USA. New York: IEEE, 5648-5656(2016).

    [44] Boulch A. Guerry J, le Saux B, et al. SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks[J]. Computers & Graphics, 71, 189-198(2018).

    [45] Lawin F J, Danelljan M, Tosteberg P et al. Deep projective 3D semantic segmentation. [C]∥International Conference on Computer Analysis of Images and Patterns. Cham: Springer, 95-107(2017).

    [46] Hackel T, Savinov N, Ladicky L, remote sensing, spatial information scienceset al. SEMANTIC3D.NET: a new large-scale point cloud classification benchmark[M/OL]. IV-1-W1: 91-98[2018-07-20]. http:∥www.semantic3d.net/view_results.php?chl=2.(2017).

    [47] Maturana D, Sebastian S. VoxNet: a 3D convolutional neural network for real-time object recognition. [C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems, Congress Center Hamburg, September 28-October 2, 2015, Hamburg, Germany. New York: IEEE, 922-928(2015).

    [48] Riegler G, Ulusoy A O, Geiger A. OctNet: learning deep 3D representations at high resolutions. [C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 3, 6620-6629(2017).

    [49] Huang J, You S Y. Point cloud labeling using 3D convolutional neural network. [C]∥23rd International Conference on Pattern Recognition (ICPR), December 4-8, 2016, Cancun, Mexico. New York: IEEE, 2670-2675(2016).

    [50] Roynard X, Deschaud J E. -04-10)[2018-07-18]. https:∥arxiv., org/abs/1804, 03583(2018).

    [51] Wang L, Huang Y C, Shan J et al. MSNet: multi-scale convolutional network for point cloud classification[J]. Remote Sensing, 10, 612(2018). http://adsabs.harvard.edu/abs/2018RemS...10..612W

    [52] Tchapmi L, Choy C, Armeni I et al. SEGCloud: semantic segmentation of 3D point clouds. [C]∥International Conference on 3D Vision (3DV), October 10-12, 2017, Qingdao, China. New York: IEEE, 537-547(2017).

    [53] Charles R Q, Su H, Mo K C et al. PointNet: deep learning on point sets for 3D classification and segmentation. [C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 77-85(2017).

    [54] Li Y Y, Bu R, Sun M C et al. -11-05)[2018-07-15]. https:∥arxiv., org/abs/1801, 07791(2018).

    [55] Li J, Chen B M, Lee G H. SO-net: self-organizing network for point cloud analysis. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 18-23, 2018. Salt Lake City, UT, USA. New York: IEEE, 9397-9406(2018).

    [56] Behl A, Paschalidou D, Donné S et al. -06-06)[2018-07-18]. https:∥arxiv., org/abs/1806, 02170(2018).

    Yong Li, Guofeng Tong, Jingchao Yang, Liqiang Zhang, Hao Peng, Huashuai Gao. 3D Point Cloud Scene Data Acquisition and Its Key Technologies for Scene Understanding[J]. Laser & Optoelectronics Progress, 2019, 56(4): 040002
    Download Citation