[1] Kim B S, Kohli P, Savarese S. 3D scene understanding by voxel-CRF. [C]∥2013 IEEE International Conference on Computer Vision, December 1-8, 2013, Sydney, NSW, Australia. New York: IEEE, 1425-1432(2013).
[2] Zhuang Y, He G J, Hu H S et al. A novel outdoor scene-understanding framework for unmanned ground vehicles with 3D laser scanners[J]. Transactions of the Institute of Measurement and Control, 37, 435-445(2015).
[5] Izadi S, Kim D, Hilliges O et al. KinectFusion : real-time 3D reconstruction and interaction using a moving depth camera. [C]∥Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, October 16-19, 2011. Santa Barbara, California, USA. New York: ACM, 559-568(2011).
[7] Bircher A, Alexis K, Burri M et al. Structural inspection path planning via iterative viewpoint resampling with application to aerial robotics. [C]∥IEEE International Conference on Robotics and Automation (ICRA), May 26-30, 2015, Seattle, WA, USA. New York: IEEE, 6423-6430(2015).
[9] Landrieu L, Simonovsky M. Large-scale point cloud semantic segmentation with superpoint graphs. [C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 19-21, 2018, Salt Lake City, Utah, USA. New York: IEEE, 4558-4567(2018).
[10] Silberman N, Hoiem D, Kohli P et al. Indoor segmentation and support inference from RGBD images. [C]∥European Conference on Computer Vision. Berlin, Heidelberg: Springer, 746-760(2012).
[11] Song S R, Lichtenberg S P, Xiao J X. SUN RGB-D: a RGB-D scene understanding benchmark suite. [C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 567-576(2015).
[12] Chen C J, Wang G, panorama images: CN202782968U[P]. -03-13(2013).
[15] Sydney urban objects dataset[EB/OL]. -11-04)[2018-07-18] http:∥www. acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml.(2013).
[16] Wu Z, Song S, Khosla A et al. 3D shapeNets: A deep representation for volumetric shapes. [C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 23-28, 2014, Columbus, OH, USA. New York: IEEE, 1912-1920(2014).
[17] Johnson A E. Spin-images: a representation for 3-D surface matching[D]. Pennsylvania: Carnegie Mellon University(1997).
[18] Frome A, Huber D, Kolluri R et al. Recognizing objects in range data using regional point descriptors. [C]∥European Conference on Computer Vision. Berlin, Heidelberg: Springer, 224-237(2004).
[19] Rusu R B, Blodow N, Marton Z C et al. Aligning point cloud views using persistent feature histograms. [C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems, September 22-26, 2008, Nice, France. New York: IEEE, 3384-3391(2008).
[21] Wohlkinger W, Vincze M. Ensemble of shape functions for 3D object classification. [C]∥IEEE International Conference on Robotics and Biomimetics, December 7-11, 2011, Karon Beach, Phuket, Thailand. New York: IEEE, 2987-2992(2011).
[22] Rusu R B, Bradski G, Thibaux R et al. Fast 3D recognition and pose using the viewpoint feature histogram. [C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, 2010, Taipei, Taiwan, China. New York: IEEE, 2155-2162(2010).
[23] Rusu R B, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration. [C]∥IEEE International Conference on Robotics and Automation, May 12-17, 2009, Kobe, Japan, New York: IEEE, 3212-3217(2009).
[24] Sappa A D, Devy M. Fast range image segmentation by an edge detection strategy. [C]∥Proceedings Third International Conference on 3-D Digital Imaging and Modeling, May 28-June 1, 2001, Quebec City, Quebec, Canada. New York: IEEE, 292-299(2001).
[26] Papon J, Abramov A, Schoeler M et al. Voxel cloud connectivity segmentation-supervoxels for point clouds. [C]∥IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2013, Portland, OR, USA. New York: IEEE, 2027-2034(2013).
[29] Wang Y M, Shi H B. A segmentation method for point cloud based on local sample and statistic inference[M]. ∥Bian F L, Xie Y C. eds. Geo-Informatics in Resource Management and Sustainable Ecosystem. Berlin, Heidelberg: Springer, 274-282(2015).
[30] Green W R, Grobler H. Normal distribution transform graph-based point cloud segmentation. [C]∥Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference, November 26-27, 2015, Port Elizabeth, South Africa. New York: IEEE, 54-59(2015).
[33] Wolf D, Prankl J, Vincze M. Fast semantic segmentation of 3D point clouds using a dense CRF with learned parameters. [C]∥IEEE International Conference on Robotics and Automation (ICRA), May 26-30, 2015, Seattle, WA, USA. New York: IEEE, 4867-4873(2015).
[36] Xiang B B, Yao J, Lu X H et al. Segmentation-based classification for 3D urban point clouds. [C]∥IEEE International Conference on Information and Automation (ICIA), August 1-3, 2016, Ningbo, China. New York: IEEE, 172-177(2016).
[37] Aijazi A K, Checchin P, Trassoudaine L. Segmentation based classification of 3D urban point clouds: a super-voxel based approach with evaluation[J]. Remote Sensing, 5, 1624-1650(2013).
[39] Lodha S K, Fitzpatrick D M, Helmbold D P. Aerial lidar data classification using AdaBoost. [C]∥Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007), August 21-23, 2007, Montreal, QC, Canada. New York: IEEE, 435-442(2007).
[41] Niemeyer J, Rottensteiner F, Soergel U. Classification of urban LiDAR data using conditional random field and random forests. [C]∥Joint Urban Remote Sensing Event 2013, April 21-23, 2013, Sao Paulo, Brazil. New York: IEEE, 139-142(2013).
[42] Su H, Maji S, Kalogerakis E et al. Multi-view convolutional neural networks for 3D shape recognition. [C]∥IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 945-953(2015).
[43] Qi C R, Su H, Nießner M et al. Volumetric and multi-view CNNs for object classification on 3D data. [C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30,2016, Las Vegas, NV, USA. New York: IEEE, 5648-5656(2016).
[44] Boulch A. Guerry J, le Saux B, et al. SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks[J]. Computers & Graphics, 71, 189-198(2018).
[45] Lawin F J, Danelljan M, Tosteberg P et al. Deep projective 3D semantic segmentation. [C]∥International Conference on Computer Analysis of Images and Patterns. Cham: Springer, 95-107(2017).
[46] Hackel T, Savinov N, Ladicky L, remote sensing, spatial information scienceset al. SEMANTIC3D.NET: a new large-scale point cloud classification benchmark[M/OL]. IV-1-W1: 91-98[2018-07-20]. http:∥www.semantic3d.net/view_results.php?chl=2.(2017).
[47] Maturana D, Sebastian S. VoxNet: a 3D convolutional neural network for real-time object recognition. [C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems, Congress Center Hamburg, September 28-October 2, 2015, Hamburg, Germany. New York: IEEE, 922-928(2015).
[48] Riegler G, Ulusoy A O, Geiger A. OctNet: learning deep 3D representations at high resolutions. [C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 3, 6620-6629(2017).
[49] Huang J, You S Y. Point cloud labeling using 3D convolutional neural network. [C]∥23rd International Conference on Pattern Recognition (ICPR), December 4-8, 2016, Cancun, Mexico. New York: IEEE, 2670-2675(2016).
[50] Roynard X, Deschaud J E. -04-10)[2018-07-18]. https:∥arxiv., org/abs/1804, 03583(2018).
[52] Tchapmi L, Choy C, Armeni I et al. SEGCloud: semantic segmentation of 3D point clouds. [C]∥International Conference on 3D Vision (3DV), October 10-12, 2017, Qingdao, China. New York: IEEE, 537-547(2017).
[53] Charles R Q, Su H, Mo K C et al. PointNet: deep learning on point sets for 3D classification and segmentation. [C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 77-85(2017).
[54] Li Y Y, Bu R, Sun M C et al. -11-05)[2018-07-15]. https:∥arxiv., org/abs/1801, 07791(2018).
[55] Li J, Chen B M, Lee G H. SO-net: self-organizing network for point cloud analysis. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 18-23, 2018. Salt Lake City, UT, USA. New York: IEEE, 9397-9406(2018).
[56] Behl A, Paschalidou D, Donné S et al. -06-06)[2018-07-18]. https:∥arxiv., org/abs/1806, 02170(2018).