[1] D. Perez, I. Gasulla, J. Capmany. Field-programmable photonic arrays. Opt. Express, 26, 27265(2018).
[2] W. Bogaerts, D. Pérez, J. Capmany et al. Programmable photonic circuits. Nature, 586, 207(2020).
[3] D. Pérez, I. Gasulla, P. Das Mahapatra et al. Principles, fundamentals, and applications of programmable integrated photonics. Adv. Opt. Photonics, 12, 709(2020).
[4] W. Bogaerts, X. Chen, M. Wang et al. Programmable silicon photonic integrated circuits. IEEE Photonics Conference (IPC), 1(2020).
[5] W. Bogaerts, A. Rahim. Programmable photonics: An opportunity for an accessible large-volume pic ecosystem. IEEE J. Sel. Top Quantum, 26, 8302517(2020).
[6] D. Pérez-López, A. Gutiérrez, J. Capmany. Silicon nitride programmable photonic processor with folded heaters. Opt. Express, 29, 9043(2021).
[7] D. Pérez-López, A. López, P. DasMahapatra et al. Multipurpose self-configuration of programmable photonic circuits. Nat. Commun., 11, 6359(2020).
[8] D. P. López. Automated configuration of general-purpose programmable photonic ics: from rf equalizers to dispersion management. Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), 1(2020).
[9] D. P. López. Programmable integrated silicon photonics waveguide meshes: Optimized designs and control algorithms. IEEE J. Sel. Top. Quantum, 26, 8301312(2020).
[10] X. Chen, P. Stroobant, M. Pickavet et al. Graph representations for programmable photonic circuits. J. Lightwave Technol., 38, 4009(2020).
[11] X. Chen, W. Bogaerts. A graph-based design and programming strategy for reconfigurable photonic circuits. IEEE Photonics Society Summer Topical Meeting Series (SUM), 1(2019).
[12] Z. Gao, X. Chen, Z. Zhang et al. Provable routing analysis of programmable photonics(2023).
[13] A. López, D. Pérez, P. DasMahapatra et al. Auto-routing algorithm for field-programmable photonic gate arrays. Opt. Express, 28, 737(2020).
[14] I. Zand, W. Bogaerts. Effects of coupling and phase imperfections in programmable photonic hexagonal waveguide meshes. Photonics Res., 8, 211(2020).
[15] D. Pérez, J. Capmany. Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica, 6, 19(2019).
[16] D. Perez Lopez, A. Lopez Hernandez, P. Das Mahapatra et al. Field-programmable photonic array for multipurpose microwave photonic applications. IEEE International Topical Meeting on Microwave Photonics (MWP), 147(2019).
[17] D. Pérez, I. Gasulla, L. Crudgington et al. Multipurpose silicon photonics signal processor core: supplementary material. Nat. Commun., 8, 636(2017).
[18] D. Pérez-López, A. López, P. DasMahapatra et al. Multipurpose self-configuration of programmable photonic circuits: supplementary material. Nat. Commun., 11, 6359(2020).
[19] E. Sánchez, A. López, D. Pérez-López. Simulation of highly coupled programmable photonic circuits. J. Lightwave Technol., 40, 6423(2022).
[20] Z. Gao, X. Chen, Z. Zhang et al. Automatic realization of light processing functions for programmable photonics. IEEE Photonics Conference (IPC), 1(2022).
[21] Z. Gao, X. Chen, Z. Zhang et al. Automatic synthesis of light-processing functions for programmable photonics: theory and realization. Photonics Res., 11, 643(2023).
[22] D. Perez, I. Gasulla, J. Capmany et al. Reconfigurable lattice mesh designs for programmable photonic processors. Opt. Express, 24, 12093(2016).
[23] A. Fyrillas, O. Faure, N. Maring et al. Scalable machine learning-assisted clear-box characterization for optimally controlled photonic circuits. Optica, 11, 427(2024).
[24] S. Bandyopadhyay, A. Sludds, S. Krastanov. Single chip photonic deep neural network with accelerated training(2022).
[25] A. López-Hernández, M. Gutiérrez-Zubillaga, D. Pérez-López. Automatic self-calibration of programmable photonic processors. IEEE Photonics Conference (IPC), 1(2022).
[26] M. K. Smit, C. Van Dam. Phasar-based wdm-devices: Principles, design and applications. IEEE J. Sel. Top. Quantum Electron., 2, 236(1996).
[27] Y. Xing, J. Dong, S. Dwivedi et al. Accurate extraction of fabricated geometry using optical measurement. Photonics Res., 6, 1008(2018).
[28] Y. Xing, J. Dong, U. Khan et al. Capturing the effects of spatial process variations in silicon photonic circuits. ACS Photonics, 10, 2264(2023).
[29] J. C. Mikkelsen, W. D. Sacher, J. K. S. Poon. Dimensional variation tolerant silicon-on-insulator directional couplers. Opt. Express, 22, 3145(2014).