• Photonics Research
  • Vol. 12, Issue 10, 2409 (2024)
Jiahao Dong1, Liang Xu1,6,*, Yiqi Fang2, Hongcheng Ni3..., Feng He4,5, Songlin Zhuang1 and Yi Liu1,5,7,*|Show fewer author(s)
Author Affiliations
  • 1Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Fachbereich Physik, Universität Konstanz, 78464 Konstanz, Germany
  • 3State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
  • 4Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 5CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
  • 6e-mail: liangxu2021@usst.edu.cn
  • 7e-mail: yi.liu@usst.edu.cn
  • show less
    DOI: 10.1364/PRJ.528051 Cite this Article Set citation alerts
    Jiahao Dong, Liang Xu, Yiqi Fang, Hongcheng Ni, Feng He, Songlin Zhuang, Yi Liu, "Scheme for generation of spatiotemporal optical vortex attosecond pulse trains," Photonics Res. 12, 2409 (2024) Copy Citation Text show less
    References

    [1] P. Agostini, L. F. DiMauro. The physics of attosecond light pulses. Rep. Prog. Phys., 67, 813-855(2004).

    [2] F. Krausz, M. Ivanov. Attosecond physics. Rev. Mod. Phys., 81, 163-234(2009).

    [3] https://www.nobelprize.org/prizes/physics. https://www.nobelprize.org/prizes/physics

    [4] J. L. Krause, K. J. Schafer, K. C. Kulander. High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett., 68, 3535-3538(1992).

    [5] P. B. Corkum. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett., 71, 1994-1997(1993).

    [6] M. Lewenstein, P. Balcou, M. Y. Ivanov. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A, 49, 2117-2132(1994).

    [7] J. H. Eberly, Q. Su, J. Javanainen. Nonlinear light scattering accompanying multiphoton ionization. Phys. Rev. Lett., 62, 881-884(1989).

    [8] P. M. Paul, E. S. Toma, P. Breger. Observation of a train of attosecond pulses from high harmonic generation. Science, 292, 1689-1692(2001).

    [9] M. Hentschel, R. Kienberger, C. Spielmann. Attosecond metrology. Nature, 414, 509-513(2001).

    [10] M. Chini, K. Zhao, Z. Chang. The generation, characterization and applications of broadband isolated attosecond pulses. Nat. Photonics, 8, 178-186(2014).

    [11] T. Popmintchev, M.-C. Chen, D. Popmintchev. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science, 336, 1287-1291(2012).

    [12] J. Gao, J. Wu, Z. Lou. High-order harmonic generation in an X-ray range from laser-induced multivalent ions of noble gas. Optica, 9, 1003-1008(2022).

    [13] G. Sansone, E. Benedetti, F. Calegari. Isolated single-cycle attosecond pulses. Science, 314, 443-446(2006).

    [14] J. Li, X. Ren, Y. Yin. 53-attosecond X-ray pulses reach the carbon K-edge. Nat. Commun., 8, 186(2017).

    [15] T. Gaumnitz, A. Jain, Y. Pertot. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt. Express, 25, 27506-27518(2017).

    [16] S. Kazamias, D. Douillet, F. Weihe. Global optimization of high harmonic generation. Phys. Rev. Lett., 90, 193901(2003).

    [17] E. J. Takahashi, T. Kanai, K. L. Ishikawa. Coherent water window X-ray by phase-matched high-order harmonic generation in neutral media. Phys. Rev. Lett., 101, 253901(2008).

    [18] C. Jin, G. Wang, H. Wei. Waveforms for optimal sub-keV high-order harmonics with synthesized two- or three-colour laser fields. Nat. Commun., 5, 4003(2014).

    [19] B. Xue, Y. Tamaru, Y. Fu. Fully stabilized multi-TW optical waveform synthesizer: toward gigawatt isolated attosecond pulses. Sci. Adv., 6, eaay2802(2020).

    [20] Y. Fu, K. Nishimura, R. Shao. High efficiency ultrafast water window harmonic generation for single-shot soft X-ray spectroscopy. Commun. Phys., 3, 92(2020).

    [21] P. M. Kraus, A. Rupenyan, H. J. Wörner. High-harmonic spectroscopy of oriented OCS molecules: emission of even and odd harmonics. Phys. Rev. Lett., 109, 233903(2012).

    [22] E. Frumker, C. T. Hebeisen, N. Kajumba. Oriented rotational wave-packet dynamics studies via high harmonic generation. Phys. Rev. Lett., 109, 113901(2012).

    [23] D. Shafir, Y. Mairesse, D. M. Villeneuve. Atomic wavefunctions probed through strong-field light-matter interaction. Nat. Phys., 5, 412-416(2009).

    [24] H. Niikura, N. Dudovich, D. M. Villeneuve. Mapping molecular orbital symmetry on high-order harmonic generation spectrum using two-color laser fields. Phys. Rev. Lett., 105, 053003(2010).

    [25] H. Hu, N. Li, P. Liu. Pure even harmonic generation from oriented CO in linearly polarized laser fields. Phys. Rev. Lett., 119, 173201(2017).

    [26] O. Kfir, P. Grychtol, E. Turgut. Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics. Nat. Photonics, 9, 99-105(2015).

    [27] P.-C. Huang, C. Hernández-García, J.-T. Huang. Polarization control of isolated high-harmonic pulses. Nat. Photonics, 12, 349-354(2018).

    [28] W. Li, F. He. Generation and application of a polarization-skewed attosecond pulse train. Phys. Rev. A, 104, 063114(2021).

    [29] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [30] Y. Shen, X. Wang, Z. Xie. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [31] N. Bozinovic, Y. Yue, Y. Ren. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [32] G. C. G. Berkhout, M. W. Beijersbergen. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects. Phys. Rev. Lett., 101, 100801(2008).

    [33] J. Gao, X. Zhang, Y. Wang. Structured air lasing of N2+. Commun. Phys., 6, 97(2023).

    [34] M. Zürch, C. Kern, P. Hansinger. Strong-field physics with singular light beams. Nat. Phys., 8, 743-746(2012).

    [35] C. Hernández-García, A. Picón, J. San Román. Attosecond extreme ultraviolet vortices from high-order harmonic generation. Phys. Rev. Lett., 111, 083602(2013).

    [36] K. M. Dorney, L. Rego, N. J. Brooks. Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin-orbit momentum conservation. Nat. Photonics, 13, 123-130(2019).

    [37] L. Rego, K. M. Dorney, N. J. Brooks. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science, 364, eaaw9486(2019).

    [38] Y. Fang, Y. Liu. Generation and control of extreme ultraviolet free-space optical skyrmions with high harmonic generation. Adv. Photonics Nexus, 2, 046009(2023).

    [39] S. W. Hancock, S. Zahedpour, A. Goffin. Free-space propagation of spatiotemporal optical vortices. Optica, 6, 1547-1553(2019).

    [40] K. Y. Bliokh, F. Nori. Spatiotemporal vortex beams and angular momentum. Phys. Rev. A, 86, 033824(2012).

    [41] N. Jhajj, I. Larkin, E. W. Rosenthal. Spatiotemporal optical vortices. Phys. Rev. X, 6, 031037(2016).

    [42] A. Chong, C. Wan, J. Chen. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photonics, 14, 350-354(2020).

    [43] A. P. Sukhorukov, V. V. Yangirova. Spatio-temporal vortices: properties, generation and recording. Proc. SPIE, 5949, 594906(2005).

    [44] K. Y. Bliokh. Spatiotemporal vortex pulses: angular momenta and spin-orbit interaction. Phys. Rev. Lett., 126, 243601(2021).

    [45] H. Ge, S. Liu, X.-Y. Xu. Spatiotemporal acoustic vortex beams with transverse orbital angular momentum. Phys. Rev. Lett., 131, 014001(2023).

    [46] S. Wang, Y. Bai, N. Li. Generation of terahertz spatiotemporal optical vortices with frequency-dependent orbital angular momentum. Opt. Express, 31, 16267-16280(2023).

    [47] K. Y. Bliokh. Orbital angular momentum of optical, acoustic, and quantum-mechanical spatiotemporal vortex pulses. Phys. Rev. A, 107, L031501(2023).

    [48] F. Sun, W. Wang, H. Dong. Generation of isolated attosecond electron sheet via relativistic spatiotemporal optical manipulation. Phys. Rev. Res., 6, 013075(2024).

    [49] Q. Cao, Z. Chen, C. Zhang. Propagation of transverse photonic orbital angular momentum through few-mode fiber. Adv. Photonics, 15, 036002(2023).

    [50] S. Huang, Z. Li, J. Li. Spatiotemporal vortex strings. Sci. Adv., 10, eadn6206(2024).

    [51] G. Gui, N. J. Brooks, H. C. Kapteyn. Second-harmonic generation and the conservation of spatiotemporal orbital angular momentum of light. Nat. Photonics, 15, 608-613(2021).

    [52] Z.-Y. Chen, R. Hu, S. Zhang. Relativistic high-order harmonic generation of spatiotemporal optical vortices. Phys. Rev. A, 106, 013516(2022).

    [53] Y. Fang, S. Lu, Y. Liu. Controlling photon transverse orbital angular momentum in high harmonic generation. Phys. Rev. Lett., 127, 273901(2021).

    [54] K. Burnett, V. C. Reed, J. Cooper. Calculation of the background emitted during high-harmonic generation. Phys. Rev. A, 45, 3347-3349(1992).

    [55] M. D. Feit, J. A. Fleck, A. Steiger. Solution of the Schrödinger equation by a spectral method. J. Comput. Phys., 47, 412-433(1982).

    [56] R. Kosloff, H. Tal-Ezer. A direct relaxation method for calculating eigenfunctions and eigenvalues of the schrödinger equation on a grid. Chem. Phys. Lett., 127, 223-230(1986).

    [57] F. He, C. Ruiz, A. Becker. Absorbing boundaries in numerical solutions of the time-dependent Schrödinger equation on a grid using exterior complex scaling. Phys. Rev. A, 75, 053407(2007).

    [58] P. Antoine, B. Piraux, A. Maquet. Time profile of harmonics generated by a single atom in a strong electromagnetic field. Phys. Rev. A, 51, R1750-R1753(1995).

    [59] Y. Fang, M. Han, P. Ge. Photoelectronic mapping of the spin-orbit interaction of intense light fields. Nat. Photonics, 15, 115-120(2021).

    [60] S. W. Hancock, S. Zahedpour, H. M. Milchberg. Mode structure and orbital angular momentum of spatiotemporal optical vortex pulses. Phys. Rev. Lett., 127, 193901(2021).

    [61] Q. Zhan. Spatiotemporal sculpturing of light: a tutorial. Adv. Opt. Photonics, 16, 163-228(2024).

    [62] S. Huang, P. Wang, X. Shen. Diffraction properties of light with transverse orbital angular momentum. Optica, 9, 469-472(2022).

    [63] J. Itatani, F. Quéré, G. L. Yudin. Attosecond streak camera. Phys. Rev. Lett., 88, 173903(2002).

    [64] K. J. Schafer, M. B. Gaarde, A. Heinrich. Strong field quantum path control using attosecond pulse trains. Phys. Rev. Lett., 92, 023003(2004).

    [65] D. Azoury, M. Krüger, G. Orenstein. Self-probing spectroscopy of XUV photo-ionization dynamics in atoms subjected to a strong-field environment. Nat. Commun., 8, 1453(2017).

    [66] Z. Chang. Fundamentals of Attosecond Optics(2011).

    [67] T. Schultz, M. Vrakking. Attosecond and XUV Physics: Ultrafast Dynamics and Spectroscopy(2014).

    Jiahao Dong, Liang Xu, Yiqi Fang, Hongcheng Ni, Feng He, Songlin Zhuang, Yi Liu, "Scheme for generation of spatiotemporal optical vortex attosecond pulse trains," Photonics Res. 12, 2409 (2024)
    Download Citation