[1] P. M. Celliers, M. Millot, P. A. Sterne et al. Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility. Phys. Rev. B, 97, 144108(2018).
[2] Q. F. Chen, Y. J. Gu, J. Zheng et al. Shock-adiabatic to quasi-isentropic compression of warm dense helium up to 150 Gpa. Phys. Rev. B, 95, 224104(2017).
[3] T. Doppner, A. L. Kritcher, D. C. Swift et al. Absolute equation-of-state measurement for polystyrene from 25 to 60 Mbar using a spherically converging shock wave. Phys. Rev. Lett., 121, 025001(2018).
[4] M. C. Gregor, C. A. McCoy, D. N. Polsin et al. Shock-wave equation-of-state measurements in fused silica up to 1600 Gpa. J. Appl. Phys., 119, 215901(2016).
[5] Q. F. Chen, Y. J. Gu, Z. G. Li et al. Multishock compression of dense cryogenic hydrogen-helium mixtures up to 60 Gpa: Validating the equation of state calculated from first principles. Phys. Rev. B, 98, 064101(2018).
[6] D. Batani, H. Stabile et al. Hugoniot data for carbon at megabar pressures. Phys. Rev. Lett., 92, 065503(2004).
[7] A. Balducci, D. Batani et al. Equation of state data for gold in the pressure range <10 TPa. Phys. Rev. B, 61, 9287(2000).
[8] D. Batani, A. Morelli et al. Equation of state data for iron at pressure beyond 10 mbar. Phys. Rev. Lett., 88, 235502(2002).
[9] N. Ozaki, K. A. Tanaka et al. Gekko/hiper-driven shock waves and equation-of-state measurements at ultrahigh pressures. Phys. Plasmas, 11, 1600(2004).
[10] T. Ono, N. Ozaki et al. Equation-of-state measurements for polystyrene at multi-tpa pressures in laser direct-drive experiments. Phys. Plasmas, 12, 124503(2005).
[11] K. Jakubowska et al. Theoretical and experimental refraction index of shock compressed and pre-compressed water in the megabar pressure range. Eur. Phys. Lett., 126, 56001(2019).
[12] M. Koenig et al. Relative consistency of equation of state by laser driven shock waves. Phys. Rev. Lett., 74, 2260(1995).
[13] T. Doppner, A. L. Kritcher, D. C. Swift et al. A measurement of the equation of state of carbon envelopes of white dwarfs. Nature, 584, 51(2020).
[14] J. Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933(1995).
[15] Z. Fan, B. Liu, Y. Liu et al. Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments. Matter Radiat. Extremes, 2, 3(2017).
[16] E. M. Campbell, V. N. Goncharov, T. C. Sangster et al. Laser-direct drive program: Promise, challenge and path forward. Matter Radiat. Extremes, 2, 37(2017).
[17] A. L. Kritcher, M. E. Martin, J. Nilsen et al. Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum. Matter Radiat. Extremes, 5, 018410(2020).
[18] P. Arnault, J. A. Gaffney, S. X. Hu et al. A review of equation-of-state models for inertial confinement fusion materials. High Energy Density Phys., 28, 7(2018).
[19] Z. F. Fan, X. T. He, J. W. Li et al. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion. Phys. Plasmas, 23, 082706(2016).
[20] Y. P. Raizer, Y. B. Zel’dovich. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena(1967).
[21] R. H. Christian, J. M. Walsh. Equation of state of metals from shock wave measurements. Phys. Rev., 97, 1544-1556(1955).
[22] R. G. Mcqueen, M. H. Rice, J. M. Walsh et al. Shock-wave compressions of twenty-seven metals. Equations of state of metals. Phys. Rev., 108, 196-216(1957).
[23] A. Benuzzi-Mounaix, G. Huser, M. Koenig et al. Absolute equation of state measurements of iron using laser driven shocks. Phys. Plasmas, 9, 2466(2002).
[24] L. V. Al’tshuler, K. K. Krupnikov, B. N. Ledenev et al. Dynamic compressibility and equation of state of iron under high pressure. Sov. Phys. JETP., 7, 606(1958).
[25] L. V. Al’tshuler, A. A. Bakanova, S. B. Kormer et al. Equation of state for aluminum, copper, and lead in the high pressure region. Sov. Phys. JETP., 11, 573(1960).
[26] L. M. Baker, R. E. Hollenbach. Laser interferometer for measuring high velocities of any reflecting surface. J. Appl. Phys., 43, 4669-4675(1972).
[27] D. R. Goosman. Analysis of the laser velocity interferometer. J. Appl. Phys., 46, 3516-3524(1975).
[28] P. M. Celliers, G. W. Collins, L. B. D. Silva et al. Accurate measurement of laser-driven shock trajectories with velocity interferometry. Appl. Phys. Lett., 73, 1320-1322(1998).
[29] D. K. Bradley, P. M. Celliers, G. W. Collins et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility. Rev. Sci. Instrum., 75, 4916-4929(2004).
[30] W. F. Hemsing. Velocity sensing interferometer (VISAR) modification. Rev. Sci. Instrum., 50, 73-78(1979).
[31] P. M. Celliers, G. W. Collins, L. B. D. Silva et al. Shock-induced transformation of liquid deuterium into a metallic fluid. Phys. Rev. Lett., 84, 5564-5567(2000).
[32] P. M. Celliers, G. Collins, D. G. Hicks et al. Shock-induced transformation of Al2O3 and LiF into semiconducting liquids. Phys. Rev. Lett., 91, 035502(2003).
[33] P. M. Celliers, D. G. Hicks, P. Loubeyre et al. Coupling static and dynamic compressions: First measurements in dense hydrogen. High Pressure Res., 24, 25-31(2004).
[34] T. R. Boehly, V. N. Goncharov, W. Seka et al. Velocity and timing of multiple spherically converging shock waves in liquid deuterium. Phys. Rev. Lett., 106, 195001(2011).
[35] A. Lazicki, B. Militzer, S. Zhang et al. Equation of state of boron nitride combining computation, modeling, and experiment. Phys. Rev. B, 99, 165103(2019).
[36] D. H. Dolan. What does ‘velocity’ interferometry really measure. AIP Conf. Proc., 1159, 589(2009).
[37] B. L. Holian, M. Mareschal, C. W. Patterson, E. Salomons. Modeling shock wave in an ideal gas: Going beyond the Navier-Stokes level. Phys. Rev. E., 47, R24-R27(1993).
[38] W. Kang, H. Liu, Q. Zhang et al. Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium. Front. Phys., 11, 115206(2016).
[39] P. Crozier, S. Plimpton, A. Thompson. Lammps-Large-Scale Atomic/Molecular Massively Parallel Simulator(2007).
[40] L. Verlet. Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 159, 98-103(1967).
[41] R. A. Aziz, J. S. Carley, V. P. S. Nain et al. An accurate intermolecular potential for helium. J. Chem. Phys., 70, 4330(1979).
[42] A. Benuzzi, B. Faral, M. Koenig et al. Preheating study by reflectivity measurements in laser-driven shocks. Phys. Plasmas, 5, 2410(1998).
[43] P. Gibbon. Short Pulse Laser Interactions with Matter(2005).
[44] W. Kang, H. Liu, Y. Zhang et al. Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons. Phys. Rev. E., 95, 023201(2017).
[45] G. A. Baker. Essentials of Padé Approximants(1975).