• Chinese Journal of Lasers
  • Vol. 52, Issue 6, 0600001 (2025)
Hanshuo Wu1,3, Cheng Yang1, Haobo Li1, Zhiyong Pan1,3..., Liangjin Huang1,3, Shuai Ren2, Yue Tao1, Xiaolin Wang1,3 and Pu Zhou1,*|Show fewer author(s)
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, Hunan , China
  • 2School of Information and Communications, National University of Defense Technology, Wuhan 430035, Hunan , China
  • 3Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, Hunan , China
  • show less
    DOI: 10.3788/CJL241130 Cite this Article Set citation alerts
    Hanshuo Wu, Cheng Yang, Haobo Li, Zhiyong Pan, Liangjin Huang, Shuai Ren, Yue Tao, Xiaolin Wang, Pu Zhou. Research Progress on High‐Power Linearly‐Polarized Fiber Lasers[J]. Chinese Journal of Lasers, 2025, 52(6): 0600001 Copy Citation Text show less
    References

    [2] Tang H, Shen Y, Long L Y. Analysis and prospects for development of laser science and technology in China from the perspective of national science foundation of China[J]. Chinese Journal of Lasers, 50, 0200001(2023).

    [3] Zhou P. Review on the discipline of high power fiber laser in China[J]. Infrared and Laser Engineering, 52, 20230071(2023).

    [4] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 0904123(2014).

    [5] Shi W, Fang Q, Zhu X S et al. Fiber lasers and their applications[J]. Applied Optics, 53, 6554-6568(2014).

    [6] Zhou P, Huang L, Xu J M et al. High power linearly polarized fiber laser: generation, manipulation and application[J]. Science China Technological Sciences, 60, 1784-1800(2017).

    [7] Agrawal G P[M]. Nonlinear fiber optics(2007).

    [8] Tao R M, Ma P F, Wang X L et al. Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers[J]. Journal of Optics, 18, 065501(2016).

    [9] Ren S, Wang G J, Li W et al. 3 kW power-level all-fiberized superfluorescent fiber source with linear polarization and near-diffraction-limited beam quality[J]. Applied Optics, 61, 3952-3956(2022).

    [10] Zhou P, Leng J Y, Xiao H et al. High average power fiber lasers: research progress and future prospect[J]. Chinese Journal of Lasers, 48, 2000001(2021).

    [11] Qi Z N, Yin T C, Jiang X G et al. Narrow-linewidth high-efficiency single-frequency ytterbium-doped fiber laser with highly linear polarization at 1064 nm[J]. Applied Optics, 60, 2833-2838(2021).

    [12] Liem A, Limpert J, Zellmer H et al. 100-W single-frequency master-oscillator fiber power amplifier[J]. Optics Letters, 28, 1537-1539(2003).

    [13] Jeong Y, Nilsson J, Sahu J K et al. Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power[J]. Optics Letters, 30, 459-461(2005).

    [14] Zhang L, Cui S Z, Liu C et al. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier[J]. Optics Express, 21, 5456-5462(2013).

    [15] Ma P F, Zhou P, Ma Y X et al. Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality[J]. Applied Optics, 52, 4854-4857(2013).

    [16] Huang L, Wu H S, Li R X et al. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier[J]. Optics Letters, 42, 1-4(2017).

    [17] Huang L, Lai W C, Ma P F et al. Tapered Yb-doped fiber enabled monolithic high-power linearly polarized single-frequency laser[J]. Optics Letters, 45, 4001-4004(2020).

    [18] Dixneuf C, Guiraud G, Bardin Y V et al. Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm[J]. Optics Express, 28, 10960-10969(2020).

    [19] Hochheim S, Brockmüller E, Wessels P et al. Single-frequency 336 W spliceless all-fiber amplifier based on a chirally-coupled-core fiber for the next generation of gravitational wave detectors[J]. Journal of Lightwave Technology, 40, 2136-2143(2022).

    [20] Jiang W P, Yang C S, Zhao Q L et al. 650 W all-fiber single-frequency polarization-maintaining fiber amplifier based on hybrid wavelength pumping and tapered Yb-doped fibers[J]. Photonics, 9, 518(2022).

    [21] Zhou P, Ma P F, Ren S et al. High-power narrow linewidth fiber laser: progress and prospect[J]. Information Countermeasure Technology, 2, 16-36(2023).

    [22] Shi W, Fang Q, Fan J L et al. High power monolithic linearly polarized narrow linewidth single mode fiber laser at 1064 nm[C]. Republic of Korea, 24-28(2015).

    [23] Ran Y, Tao R M, Ma P F et al. 560 W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality[J]. Applied Optics, 54, 7258-7263(2015).

    [24] Jiang M, Xu H Y, Zhou P et al. All-fiber, narrow linewidth and linearly polarized fiber laser in a single-mode-multimode-single-mode cavity[J]. Applied Optics, 55, 6121-6124(2016).

    [25] Ma P F, Tao R M, Su R T et al. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 24, 4187-4195(2016).

    [26] Jiang M, Ma P F, Huang L et al. kW-level, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme[J]. High Power Laser Science and Engineering, 5, e30(2017).

    [27] Su R T, Tao R M, Wang X L et al. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression[J]. Laser Physics Letters, 14, 085102(2017).

    [28] Meng D, Lai W, He X et al. Kilowatt-level, mode-instability-free, all-fiber and polarization-maintained amplifier with spectral linewidth of 1.8 GHz[J]. Laser Physics, 29, 035103(2019).

    [29] Platonov N, Yagodkin R, de la Cruz J et al. Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format[J]. Proceedings of SPIE, 10512, 105120E(2018).

    [30] Wang Y S, Chang Z, Sun Y H et al. 47 GHz narrow linewidth linear polarized fiber amplifier injected by a simple fiber oscillator laser seed source[J]. Proceedings of SPIE, 10811, 108110B(2018).

    [31] Chang Z, Wang Y S, Sun Y H et al. 1.5 kW polarization-maintained Yb-doped amplifier with 13 GHz linewidth by suppressing the self-pulsing and stimulated Brillouin scattering[J]. Applied Optics, 58, 6419-6425(2019).

    [32] Wang Y S, Ma Y, Sun Y H et al. 2.62-kW, 30-GHz linearly polarized all-fiber laser with narrow linewidth and near-diffraction-limit beam quality[J]. Chinese Journal of Lasers, 46, 1215001(2019).

    [33] Wang Y S, Ke W W, Peng W J et al. 3 kW, 0.2 nm narrow linewidth linearly polarized all-fiber laser based on a compact MOPA structure[J]. Laser Physics Letters, 17, 075101(2020).

    [34] Chu Q H, Guo C, Shu Q et al. 21.7 GHz linewidth polarization maintaining fiber laser achieves 3.22 kW near diffraction limit output[J]. Chinese Journal of Lasers, 48, 1716001(2021).

    [35] Goodno G D. Linewidth narrowing of a high power polarization maintaining fiber amplifier using nonlinear phase demodulation[C], SM4K.1-14(2021).

    [36] Ren S, Ma P F, Li W et al. 3.96 kW all-fiberized linearly polarized and narrow linewidth fiber laser with near-diffraction-limited beam quality[J]. Nanomaterials, 12, 2541(2022).

    [37] Wang Y S, Peng W J, Wang J et al. 4.45 kW narrow linewidth linearly polarized near-single mode all-fiber laser[J]. Chinese Journal of Lasers, 49, 1816003(2022).

    [38] Wang Y S, Peng W J, Liu H et al. Linearly polarized fiber amplifier with narrow linewidth of 5 kW exhibiting a record output power and near-diffraction-limited beam quality[J]. Optics Letters, 48, 2909-2912(2023).

    [39] Wang Y S, Peng W J, Wang J et al. Output of 5 kW 10 GHz narrow linewidth linear polarization near-single-mode fiber laser[J]. Chinese Journal of Lasers, 50, 2416002(2023).

    [40] Liao S B, Luo T, Xiao R H et al. 3.2 kW, 0.22 nm narrow-linewidth MOPA configuration fiber laser with a homemade polarization-maintaining Yb-doped fiber[J]. Frontiers in Physics, 11, 1134745(2023).

    [41] Liao S B, Luo T, Xiao R H et al. 4.6 kW linearly polarized and narrow-linewidth monolithic fiber amplifier based on a fiber oscillator laser seed[J]. Optics Letters, 48, 6533-6536(2023).

    [42] Ren S, Ma P F, Chen Y S et al. 5 kW-level narrow linewidth fiber laser output realized by homemade polarization-maintained fiber[J]. Infrared and Laser Engineering, 52, 20220900(2023).

    [43] Xu Y, Fang Q, Cui X L et al. 1.6‑kW 8‑GHz linearly‑polarized narrow‑linewidth all‑fiber laser[J]. Chinese Journal of Lasers, 51, 1301012(2024).

    [44] Liem A, Limpert J, Schreiber T et al. High power linearly polarized fiber laser[C](2004).

    [45] Liu C H, Galvanauskas A, Khitrov V et al. High-power single-polarization and single-transverse-mode fiber laser with an all-fiber cavity and fiber-grating stabilized spectrum[J]. Optics Letters, 31, 17-19(2006).

    [46] Jeong Y, Nilsson J, Sahu J K et al. Single-mode plane-polarized ytterbium-doped large-core fiber laser with 633-W continuous-wave output power[J]. Optics Letters, 30, 955-957(2005).

    [47] Fitzau O, Geiger J, Hoffmann H D. Experimental and theoretical studies on kW class polarized fiber lasers for cw operation[J]. Proceedings of SPIE, 7195, 719509(2009).

    [48] Belke S, Becker F, Neumann B et al. Completely monolithic linearly polarized high-power fiber laser oscillator[J]. Proceedings of SPIE, 8961, 896124(2014).

    [49] Huang L, Ma P F, Tao R M et al. 1.5 kW ytterbium-doped single-transverse-mode, linearly polarized monolithic fiber master oscillator power amplifier[J]. Applied Optics, 54, 2880-2884(2015).

    [50] Wang P, Clarkson W A. High-power, single-mode, linearly polarized, ytterbium-doped fiber superfluorescent source[J]. Optics Letters, 32, 2605-2607(2007).

    [51] Ma P F, Huang L, Wang X L et al. High power broadband all fiber super-fluorescent source with linear polarization and near diffraction-limited beam quality[J]. Optics Express, 24, 1082-1088(2016).

    [52] Chen Q, Ren S, Liu W et al. All-fiberized linearly polarized superfluorescent fiber source with 5 kW power output[J]. Applied Optics, 62, 6911-6915(2023).

    [53] Li B, Chen S P, Li J S et al. Review of linearly polarized supercontinuum[J]. Acta Optica Sinica, 43, 1719003(2023).

    [54] Lehtonen M, Genty G, Ludvigsen H et al. Supercontinuum generation in a highly birefringent microstructured fiber[J]. Applied Physics Letters, 82, 2197-2199(2003).

    [55] Zhu Z M, Brown T. Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber[J]. Optics Express, 12, 791-796(2004).

    [56] Yu Y Q, Ruan S C, Du C L et al. Spectral broadening using a polarization-maintaining photonic crystal fiber by an optical parametric amplifier[J]. Proceedings of SPIE, 6025, 602507(2006).

    [57] Xiong C, Wadsworth W J. Polarized supercontinuum in birefringent photonic crystal fibre pumped at 1064 nm and application to tuneable visible/UV generation[J]. Optics Express, 16, 2438-2445(2008).

    [58] Yan P G, Shu J, Ruan S C et al. Polarization dependent visible supercontinuum generation in the nanoweb fiber[J]. Optics Express, 19, 4985-4990(2011).

    [59] Zhao Y Y, Zhou G Y, Li J S et al. Supercontinuum experimental study of V-type photonic crystal fiber with high birefringence[J]. Acta Physica Sinica, 62, 214212(2013).

    [60] Tarnowski K, Martynkien T, Mergo P et al. Polarized all-normal dispersion supercontinuum reaching 2.5 µm generated in a birefringent microstructured silica fiber[J]. Optics Express, 25, 27452-27463(2017).

    [61] Xiong M J, Li J Y, Luo X et al. Experimental and numerical study of tuneable supercontinuum generation in new kind of highly birefringent photonic crystal fiber[J]. Acta Physica Sinica, 66, 094204(2017).

    [62] Tao Y, Chen S P. All-fiber high-power linearly polarized supercontinuum generation from polarization-maintaining photonic crystal fibers[J]. High Power Laser Science and Engineering, 7, e28(2019).

    [63] Tao Y, Chen S P, Xu H. Hundred-watt level linearly polarized visible supercontinuum generation[J]. Optics Express, 27, 26044-26049(2019).

    [64] Tarnowski K, Martynkien T, Mergo P et al. Compact all-fiber source of coherent linearly polarized octave-spanning supercontinuum based on normal dispersion silica fiber[J]. Scientific Reports, 9, 12313(2019).

    [65] Genier E, Grelet S, Engelsholm R D et al. Ultra-flat, low-noise, and linearly polarized fiber supercontinuum source covering 670-1390 nm[J]. Optics Letters, 46, 1820-1823(2021).

    [66] Ali Rezvani S, Ogawa K, Fuji T K. Highly coherent multi-octave polarization-maintained supercontinuum generation solely based on ZBLAN fibers[J]. Optics Express, 28, 29918-29926(2020).

    [67] Zhang B, Jin A J, Ma P F et al. High-power near-infrared linearly-polarized supercontinuum generation in a polarization-maintaining Yb-doped fiber amplifier[J]. Optics Express, 23, 28683-28690(2015).

    [68] Shen R, Fang H, Zhao J Q et al. Over 10 W linearly polarized supercontinuum directly produced in an erbium-doped fiber MOPA seeded with stretched soliton[J]. Applied Optics, 60, 257-263(2021).

    [69] Li B, Zhao G M, Li J S et al. Over three hundred Watts linearly-polarized supercontinuum laser source[J]. Optics & Laser Technology, 175, 110775(2024).

    [70] He J R, Song R, Jiang L et al. Supercontinuum generated in an all-polarization-maintaining random fiber laser structure[J]. Optics Express, 29, 28843-28851(2021).

    [71] Zhang S, Jiang M, Li C et al. High-power broadband supercontinuum generation through a simple narrow-bandwidth FBGs-based fiber laser cavity[J]. Chinese Optics Letters, 20, 011405(2022).

    [72] Yang C S, Xu S H, Mo S P et al. 10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm[J]. Optics Express, 21, 12546-12551(2013).

    [73] Zhang Y N, Zhang Y F, Zhao Q L et al. Ultra-narrow linewidth full C-band tunable single-frequency linear-polarization fiber laser[J]. Optics Express, 24, 26209-26214(2016).

    [74] Fujita E, Mashiko Y, Asaya S et al. High power narrow-linewidth linearly-polarized 1610 nm Er ∶Yb all-fiber MOPA[J]. Optics Express, 24, 26255-26260(2016).

    [75] Yang C S, Guan X C, Lin W et al. Efficient 1.6 μm linearly-polarized single-frequency phosphate glass fiber laser[J]. Optics Express, 25, 29078-29085(2017).

    [76] De Varona O, Fittkau W, Booker P et al. Single-frequency fiber amplifier at 1.5 µm with 100 W in the linearly-polarized TEM00 mode for next-generation gravitational wave detectors[J]. Optics Express, 25, 24880-24892(2017).

    [77] Yang C S, Guan X C, Zhao Q L et al. 15 W high OSNR kHz-linewidth linearly-polarized all-fiber single-frequency MOPA at 1.6 μm[J]. Optics Express, 26, 12863-12869(2018).

    [78] Huang J M, Zhao Q L, Zheng J J et al. A 102 W high-power linearly-polarized all-fiber single-frequency laser at 1560 nm[J]. Photonics, 9, 396(2022).

    [79] Pearson L, Shen D Y, Sahu J K et al. High-power widely-tunable thulium-doped fiber master-oscillator power-amplifier around 2 μm[C], CFD6(2008).

    [80] Pearson L, Kim J W, Zhang Z et al. High-power linearly-polarized single-frequency thulium-doped fiber master-oscillator power-amplifier[J]. Optics Express, 18, 1607-1612(2010).

    [81] Shah L, Sims R A, Kadwani P et al. Integrated Tm∶fiber MOPA with polarized output and narrow linewidth with 100 W average power[J]. Optics Express, 20, 20558-20563(2012).

    [82] Liu J, Shi H X, Liu K et al. 210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA[J]. Optics Express, 22, 13572-13578(2014).

    [83] Shah L, Sims R A, Kadwani P et al. High-power spectral beam combining of linearly polarized Tm: fiber lasers[J]. Applied Optics, 54, 757-762(2015).

    [84] Shi H X, Liu J, Liu K et al. Hundred-watt-level linearly-polarized diode-seeded nanosecond thulium-doped fiber laser[J]. Chinese Journal of Lasers, 42, 0802005(2015).

    [85] Wang J C, Yeom D I, Lee S B et al. 28W CW linearly polarized single mode all-fiber thulium-doped fiber laser operating at 1.95 μm[J]. Optical Engineering, 56, 046108(2017).

    [86] Guan X C, Yang C S, Gu Q et al. 55 W kilohertz-linewidth core- and in-band-pumped linearly polarized single-frequency fiber laser at 1950 nm[J]. Optics Letters, 45, 2343-2346(2020).

    [87] Bolingbroke G N, Oermann M, Ng S W S et al. High-efficiency, single-frequency, polarized thulium-doped silica fiber lasers[J]. Optics Letters, 49, 4362-4365(2024).

    [88] Baer P, Cebeci P, Reiter M et al. Ultra-Low-Noise, Single-Frequency, All-PM Thulium- and Holmium-Doped Fiber Amplifiers at 1950 nm and 2090 nm for Third-Generation Gravitational Wave Detectors[J]. IEEE Photonics Journal, 16, 1500809(2024).

    [89] Wang J Z, Wen B L, Chen X Z et al. All-polarization-maintaining Ho-doped fiber oscillator mode-locked with nonlinear polarization evolution[J]. Optics Letters, 49, 133-136(2024).

    [90] Tench R E, Romano C, Williams G M et al. Two-stage performance of polarization-maintaining holmium-doped fiber amplifiers[J]. Journal of Lightwave Technology, 37, 1434-1439(2019).

    [91] Tench R E, Romano C, Delavaux J M et al. In-depth studies of the spectral bandwidth of a 25 W 2 μm band PM hybrid Ho- and Tm-doped fiber amplifier[J]. Journal of Lightwave Technology, 38, 2456-2463(2020).

    [92] Baer P, Cebeci P, Reiter M et al. 10 W-class, narrow-linewidth, linearly polarized, low-noise holmium-doped fiber amplifier at 2095 nm[J]. Optics Continuum, 3, 1302-1310(2024).

    [93] Kurkov A S. Oscillation spectral range of Yb-doped fiber lasers[J]. Laser Physics Letters, 4, 93-102(2007).

    [94] Zhou P, Wang X, Xiao H et al. Review on recent progress on Yb-doped fiber laser in a variety of oscillation spectral ranges[J]. Laser Physics, 22, 823-831(2012).

    [95] Sinha S, Urbanek K E, Hum D S et al. Linearly polarized, 3.35 W narrow-linewidth, 1150 nm fiber master oscillator power amplifier for frequency doubling to the yellow[J]. Optics Letters, 32, 1530-1532(2007).

    [96] Kashiwagi M, Takenaga K, Ichii K et al. Over 10 W output linearly-polarized single-stage fiber laser oscillating above 1160 nm using Yb-doped polarization-maintaining solid photonic bandgap fiber[J]. IEEE Journal of Quantum Electronics, 47, 1136-1141(2011).

    [97] Wang J H, Hu J M, Zhang L et al. A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm[J]. Optics Express, 20, 28373-28378(2012).

    [98] Huang L, Zhang H W, Wang X L et al. A high-power LD-pumped linearly polarized Yb-doped fiber laser operating at 1152 nm with 42 GHz narrow linewidth and 18 dB PER[J]. Laser Physics, 26, 075105(2016).

    [99] Liu X J, Huang B C, Han K Z et al. High power linearly polarized narrow linewidth ytterbium doped fiber laser at 1120 nm[C], 24-27(2016).

    [100] Yang C S, Zhao Q L, Feng Z M et al. 1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser[J]. Optics Express, 24, 29794-29799(2016).

    [101] Tao Y, Jiang M, Li C et al. Low-threshold 1150 nm single-polarization single-frequency Yb-doped DFB fiber laser[J]. Optics Letters, 46, 3705-3708(2021).

    [102] Chen Y G, Lin Z Q, Sun H T et al. High-power lasing at ∼900 nm in Nd3+-doped fiber: a direct coordination engineering approach to enhance fluorescence[J]. Optica, 10, 905-912(2023).

    [103] Corre K L, Robin T, Barnini A et al. Linearly-polarized pulsed Nd-doped fiber MOPA at 905 nm and frequency conversion to deep-UV at 226 nm[J]. Optics Express, 29, 4240-4248(2021).

    [104] Le Corre K, Barnini A, Robin T et al. Watt-level deep-UV subnanosecond laser system based on Nd-doped fiber at 229 nm[J]. Optics Letters, 48, 1276-1279(2023).

    [105] Skubchenko S A, Vyatkin M Y, Gapontsev D V. High-power CW linearly polarized all-fiber Raman laser[J]. IEEE Photonics Technology Letters, 16, 1014-1016(2004).

    [106] Wang J H, Zhang L, Zhou J et al. High power linearly polarized Raman fiber laser at 1120 nm[J]. Chinese Optics Letters, 10, 21406-21408(2012).

    [107] Zhang L, Hu J M, Wang J H et al. Stimulated-Brillouin-scattering-suppressed high-power single-frequency polarization-maintaining Raman fiber amplifier with longitudinally varied strain for laser guide star[J]. Optics Letters, 37, 4796-4798(2012).

    [108] Surin A A, Larin S V, Surin A A. 14 W SHG in MgO: sPPLT at 589 nm from high power CW linearly polarized RFL[C](2014).

    [109] Chen M C, Shirakawa A, Olausson C B et al. 87 W, narrow-linewidth, linearly-polarized 1178 nm photonic bandgap fiber amplifier[J]. Optics Express, 23, 3134-3141(2015).

    [110] Ma P F, Zhang H W, Huang L et al. Kilowatt-level near-diffraction-limited and linear-polarized Ytterbium-Raman hybrid nonlinear amplifier based on polarization selection loss mechanism[J]. Optics Express, 23, 26499-26508(2015).

    [111] Lobach I A, Kablukov S I, Babin S A. Linearly polarized cascaded Raman fiber laser with random distributed feedback operating beyond 1.5 μm[J]. Optics Letters, 42, 3526-3529(2017).

    [112] Zlobina E A, Kablukov S I, Babin S A. Linearly polarized random fiber laser with ultimate efficiency[J]. Optics Letters, 40, 4074-4077(2015).

    [113] Surin A A, Borisenko T E, Larin S V. Generation of 14 W at 589 nm by frequency doubling of high-power CW linearly polarized Raman fiber laser radiation in MgO∶sPPLT crystal[J]. Optics Letters, 41, 2644-2647(2016).

    [114] Lou Z K, Xu J M, Huang L et al. Linearly-polarized random distributed feedback Raman fiber laser with record power[J]. Laser Physics Letters, 14, 055102(2017).

    [115] Xu J M, Huang L, Jiang M et al. Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output[J]. Photonics Research, 5, 350-354(2017).

    [116] Xu J M, Lou Z K, Ye J et al. Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects[J]. Optics Express, 25, 5609-5617(2017).

    [117] Song J X, Wu H S, Ye J et al. High power linearly polarized Raman fiber laser with stable temporal output[J]. Photonic Sensors, 9, 43-48(2019).

    [118] Liu Y K, Su R T, Ma P F et al. >1 kW all-fiberized narrow-linewidth polarization-maintained fiber amplifiers with wavelength spanning from 1065 nm to 1090 nm[J]. Applied Optics, 56, 4213-4218(2017).

    [119] Song J X, Wu H S, Xu J M et al. High-power linearly-polarized tunable Raman fiber laser[J]. Chinese Physics B, 27, 094209(2018).

    [120] Wu H S, Song J X, Ye J et al. Hundred-watt-level linearly polarized tunable Raman random fiber laser[J]. Chinese Optics Letters, 16, 061402(2018).

    [121] Wu H S, Wang P, Song J X et al. High power tunable mid-infrared optical parametric oscillator enabled by random fiber laser[J]. Optics Express, 26, 6446-6455(2018).

    [122] Ye J, Xu J M, Song J X et al. Flexible spectral manipulation property of a high power linearly polarized random fiber laser[J]. Scientific Reports, 8, 2173(2018).

    [123] Thouroude R, Gilles H, Cadier B et al. Linearly-polarized high-power Raman fiber lasers near 1670 nm[J]. Laser Physics Letters, 16, 025102(2019).

    [124] Liu G X, Feng D J. Single- and dual-wavelength switchable linear polarized Yb3+-doped double-clad fiber laser[J]. Applied Optics, 54, 4309-4312(2015).

    [125] Liu X J, Huang B C, Wei G X et al. High power switchable dual-wavelength linear polarized Yb-dozped fiber laser around 1120 nm[J]. Journal of the Optical Society of Korea, 20, 716-721(2016).

    [126] Wu H S, Wu J, Huang L et al. High power, multiwavelength, linearly polarized ytterbium-doped fiber laser based on Sagnac fiber loop mirrors[J]. High Power Laser and Particle Beams, 29, 041002(2017).

    [127] Liang J R, Xu J M, Zhang Y et al. Hundred-watt-level, linearly polarized multi-wavelength fiber oscillator with wavelength, interval, and intensity tunability[J]. Journal of Lightwave Technology, 42, 882-890(2024).

    [128] Lobach I A, Kablukov S I, Podivilov E V et al. Broad-range self-sweeping of a narrow-line self-pulsing Yb-doped fiber laser[J]. Optics Express, 19, 17632-17640(2011).

    [129] Kir’yanov A V, Il’ichev N N. Self-induced laser line sweeping in an ytterbium fiber laser with non-resonant Fabry-Perot cavity[J]. Laser Physics Letters, 8, 305(2011).

    [130] Budarnykh A E, Vladimirskaya A D, Lobach I A et al. Broad-range self-sweeping single-frequency linearly polarized Tm-doped fiber laser[J]. Optics Letters, 43, 5307-5310(2018).

    [131] Wang K L, Wen Z R, Chen H W et al. Observation of reverse self-sweeping effect in an all-polarization-maintaining bidirectional ytterbium-doped fiber laser[J]. Optics Express, 28, 13913-13920(2020).

    [132] Wang K L, Wen Z R, Chen H W et al. Wavelength-flexible all-polarization-maintaining self-sweeping fiber laser based on intracavity loss tuning[J]. Chinese Optics Letters, 19, 041401(2021).

    [133] Vladimirskaya A D, Kamynin V A, Lobach I A et al. Robust operation of linearly polarized broad-range self-sweeping Ho-doped fiber laser[J]. Laser Physics Letters, 18, 075101(2021).

    [134] Luo Z Q, Song L M, Ruan Q J. Progress in research on visible rare-earth-doped fiber lasers: from continuous wave to femtosecond pulses (invited)[J]. Chinese Journal of Lasers, 51, 0101001(2024).

    [135] Li J F, Lei H, Wang S Y et al. Research progress in 2‒5 μm all-solid-state mid-infrared high-power fiber laser sources (invited)[J]. Chinese Journal of Lasers, 51, 0101005(2024).

    [136] Liu A P, Norsen M A, Mead R D. 60-W green output by frequency doubling of a polarized Yb-doped fiber laser[J]. Optics Letters, 30, 67-69(2005).

    [137] Su M Q, You Y, Quan Z et al. 321 W high-efficiency continuous-wave green laser produced by single-pass frequency doubling of narrow-linewidth fiber laser[J]. Applied Optics, 60, 3836-3841(2021).

    [138] Dong Z P, Wang H, Jia W C et al. All-polarization-maintaining, mode-locked 488 nm picosecond laser[J]. IEEE Photonics Technology Letters, 35, 283-286(2023).

    [139] Shang Y P, Xu J M, Wang P et al. Ultra-stable high-power mid-infrared optical parametric oscillator pumped by a super-fluorescent fiber source[J]. Optics Express, 24, 21684-21692(2016).

    [140] He Y, Ji Y H, Wan H H et al. High-power mid-infrared pulse MgO∶PPLN optical parametric oscillator pumped by linearly polarized Yb-doped all-fiber laser[J]. Optics & Laser Technology, 146, 107545(2022).

    [141] Luo H Y, Wang Y Z, Li J F et al. High-stability, linearly polarized mode-locking generation from a polarization-maintaining fiber oscillator around 2.8 µm[J]. Optics Letters, 46, 4550-4553(2021).

    [142] Wang Y Z, Luo H Y, Gong H T et al. 2.3 W, linearly-polarized superfluorescent generation from a polarization-maintaining Er3+-doped fluoride fiber amplifier around 2.8 μm[J]. Journal of Lightwave Technology, 40, 6001-6005(2022).

    [143] Yu L P, Liang J H, Tang Z Y et al. Generation of mid-infrared noise-like pulses from a polarization-maintaining fluoride fiber oscillator[J]. Advanced Photonics Research, 4, 2300135(2023).

    [144] Burian M, Marmiroli B, Radeticchio A et al. Picosecond pump-probe X-ray scattering at the Elettra SAXS beamline[J]. Journal of Synchrotron Radiation, 27, 51-59(2020).

    [145] Yang D D, Cai J H. Research progress of micro-nano fabrication by picosecond laser[J]. Laser & Optoelectronics Progress, 54, 010004(2017).

    [146] Zhang H F, Long M L, Deng H R et al. Developments of space debris laser ranging technology including the applications of picosecond lasers[J]. Applied Sciences, 11, 10080(2021).

    [147] Ye C G, Gong M L, Yan P et al. Linearly-polarized single-transverse-mode high-energy multi-ten nanosecond fiber amplifier with 50 W average power[J]. Optics Express, 14, 7604-7609(2006).

    [148] He J, Yan P, Wushouer X et al. 72-kW high-peak-power linearly-polarized single-mode pulsed fiber laser with 80 kHz repetition rate and 4.5 ns duration[J]. Laser Physics, 21, 180-183(2011).

    [149] Su R T, Xu J M, Zhou P et al. Single-frequency linearly-polarized 1083 nm all fiber nanosecond laser[J]. Applied Physics B, 109, 617-620(2012).

    [150] Shi C, Huang L, Wang X L et al. 5 kW High peak power, 0.2 mJ high pulse energy, linearly-polarized pulsed laser from a single all-fiber oscillator[J]. Optics & Laser Technology, 75, 24-28(2015).

    [151] Ran Y, Su R T, Ma P F et al. 293 W, GHz narrow-linewidth, polarization maintaining nanosecond fiber amplifier with SBS suppression employing simultaneous phase and intensity modulation[J]. Optics Express, 23, 25896-25905(2015).

    [152] Huang L, Ma P F, Meng D R et al. Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality[J]. High Power Laser Science and Engineering, 6, e42(2018).

    [153] Huang L, Ma P F, Su R T et al. Comprehensive investigation on the power scaling of a tapered Yb-doped fiber-based monolithic linearly polarized high-peak-power near-transform-limited nanosecond fiber laser[J]. Optics Express, 29, 761-782(2021).

    [154] Zhang K, Zhou S H, Li Y et al. 142 W high peak power narrow-linewidth linearly polarized pulsed fiber laser[J]. Infrared and Laser Engineering, 49, 0453000(2020).

    [155] Hemming A, Richards J, Simakov N et al. Pulsed operation of a resonantly pumped, linearly polarised, large mode area holmium-doped fibre amplifier[J]. Optics Express, 22, 7186-7193(2014).

    [156] Yang J L, Wang Y, Zhang G et al. High-power highly linear-polarized nanosecond all-fiber MOPA at 2040 nm[J]. IEEE Photonics Technology Letters, 27, 986-989(2015).

    [157] Shi J D, Wei L, Li Y F et al. Monolithic 2-µm single-frequency linearly-polarized gain-switched distributed feedback fiber laser by femtosecond laser direct-writing[J]. Optics Express, 31, 39292-39306(2023).

    [158] Jain D, Alam S, Codemard C et al. High power, compact, picosecond MOPA based on single trench fiber with single polarized diffraction-limited output[J]. Optics Letters, 40, 4150-4153(2015).

    [159] Wang J L, Lu J Q, Zhang N et al. An all-fiber high-power picosecond amplifier with Yb-doped polarization-maintaining tapered fiber[J]. Laser Physics, 33, 035102(2023).

    [160] Yu H L, Ma P F, Wang X L et al. Coherent polarization beam combination of two mode-locked picosecond pulses with broadband spectra[C], AM5A.21-21(2014).

    [161] Ma P F, Tao R M, Huang L et al. 608 W average power picosecond all fiber polarization-maintained amplifier with narrow-band and near-diffraction-limited beam quality[J]. Journal of Optics, 17, 075501(2015).

    [162] Li W, Ma P F, Lai W C et al. Tapered active fiber simultaneously enabled 141 W high average and 1.3 MW high peak power via all-fiber and polarization-maintained picosecond amplifier[J]. Optics & Laser Technology, 152, 108166(2022).

    [163] Zhang C, Chen S P, Li B et al. Narrow linewidth 49 W all fiber linearly polarized picosecond laser operating at 1016 nm[J]. IEEE Photonics Journal, 14, 1513307(2022).

    [164] Fu C H, Song Y Q, Tao J N et al. All-PM Yb-doped mode-locked fiber laser with high single pulse energy and high repetition frequency[J]. Journal of Optics, 26, 075502(2024).

    [165] Liu J, Liu C, Shi H X et al. High-power linearly-polarized picosecond thulium-doped all-fiber master-oscillator power-amplifier[J]. Optics Express, 24, 15005-15011(2016).

    [166] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).

    [167] Yan D Y, Liu B W, Song H Y et al. Research status and development trend of high power femtosecond fiber laser amplifiers[J]. Chinese Journal of Lasers, 46, 0508012(2019).

    [168] Wan P, Yang L M, Liu J. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers[J]. Optics Express, 21, 29854-29859(2013).

    [169] Kim K, Peng X, Lee W et al. Monolithic polarization maintaining fiber chirped pulse amplification (CPA) system for high energy femtosecond pulse generation at 1.03 µm[J]. Optics Express, 23, 4766-4770(2015).

    [170] Yu H L, Wang X L, Zhang H W et al. Linearly-polarized fiber-integrated nonlinear CPA system for high-average-power femtosecond pulses generation at 1.06 μm[J]. Journal of Lightwave Technology, 34, 4271-4277(2016).

    [171] Liu Y, Li W X, Luo D P et al. Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier[J]. Optics Express, 24, 10939-10945(2016).

    [172] Chang H, Cheng Z C, Sun R Y et al. 172-fs, 27-µJ, Yb-doped all-fiber-integrated chirped pulse amplification system based on parabolic evolution by passive spectral amplitude shaping[J]. Optics Express, 27, 34103-34112(2019).

    [173] Manchee C P K, Möller J, Miller R J D. Highly stable, 100 W average power from fiber-based ultrafast laser system at 1030 nm based on single-pass photonic-crystal rod amplifier[J]. Optics Communications, 437, 6-10(2019).

    [174] Wang T, Li C, Ren B et al. All-fiber linearly polarized femtosecond fiber amplifier realizes 440 W power output[J]. Chinese Journal of Lasers, 49, 1716001(2022).

    [175] Wang T, Ren S, Chang H X et al. High-power all-fiber linearly polarized Yb-doped chirped pulse amplifier based on active polarization control[J]. Chinese Optics Letters, 22, 041403(2024).

    [176] Xiu H, Fan Y H, Lin W et al. 1200-W all polarization-maintaining fiber GHz-femtosecond-pulse laser with good beam quality[J]. Optics Express, 31, 41940-41951(2023).

    [177] Gui Y, Yao L B, Gao C Y et al. Yb-doped ultrafast fiber laser system emitting >1.5 kW average power[J]. Proceedings of SPIE, 13209, 1320902(2024).

    [178] Stolen R. Polarization effects in fiber Raman and Brillouin lasers[J]. IEEE Journal of Quantum Electronics, 15, 1157-1160(1979).

    [179] Popov S, Vanin E. Polarization dependence of Raman gain on propagation direction of pump and probe signal in optical fibers[C], 146-147(2001).

    [180] Spring J B, Russell T H, Shay T M et al. Comparison of stimulated Brillouin scattering thresholds and spectra in nonpolarization-maintaining and polarization-maintaining passive fibers[J]. Proceedings of SPIE, 5709, 147-156(2005).

    [181] McElhenny J E, Pattnaik R, Toulouse J. Polarization dependence of stimulated Brillouin scattering in small-core photonic crystal fibers[J]. Journal of the Optical Society of America B, 25, 2107-2115(2008).

    [182] Haarlammert N, Rekas M, de Vries O et al. Polarization dependent nonlinear limitations in continuous-wave high power fiber amplifiers[J]. Proceedings of SPIE, 8601, 86012W(2013).

    [183] Guintrand C, Edgecumbe J, Farley K et al. Stimulated Brillouin scattering threshold variations due to bend-induced birefringence in a non-polarization-maintaining fiber amplifier[C], JW2A.23-13(2014).

    [184] Song J X, Xu H Y, Ye J et al. A novel high-power all-fiberized flexible spectral filter for high power linearly-polarized Raman fiber laser[J]. Scientific Reports, 8, 10942(2018).

    [185] Wang Y S, Peng W J, Feng Y J et al. Influence of injected signal polarization on SBS, SRS, spectral broadening, and self-pulsing properties in high-power fiber amplifier[J]. Laser Physics Letters, 19, 085102(2022).

    [186] Liao S B, Luo T, Xiao R H et al. Stimulated Brillouin scattering induced mode degradation in high-power narrow-linewidth linearly polarized fiber amplifiers[J]. Optics & Laser Technology, 162, 109286(2023).

    [187] Huang Z M, Shu Q, Tao R M et al. >5 kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 33, 1181-1184(2021).

    [188] Wu H S, Song J X, Ma P F et al. Bidirectional tandem-pumped high-brightness 6 kW level narrow-linewidth confined-doped fiber amplifier exploiting the side-coupled technique[J]. Optics Express, 30, 21338-21348(2022).

    [189] Cooper M A, Gausmann S, Antonio-Lopez J E et al. Confined doping LMA fibers for high power single frequency lasers[J]. Proceedings of SPIE, 11981, 1198106(2022).

    [190] Kim J, Dupriez P, Codemard C et al. Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off[J]. Optics Express, 14, 5103-5113(2006).

    [191] Li R X, Wu H S, Xiao H et al. Design and optimization methods towards a 10 kW high beam quality fiber laser based on the counter tandem pumping scheme[J]. High Power Laser Science and Engineering, 12, e38(2024).

    [192] Brar K, Savage-Leuchs M, Henrie J et al. Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers[J]. Proceedings of SPIE, 8961, 89611R(2014).

    [193] Jauregui-Misas C, Stihler C, Kholaif S E et al. Mitigation of transverse mode instability in polarization maintaining, high-power fiber amplifiers[J]. Proceedings of SPIE, 11665, 116650V(2021).

    [194] Lai W C, Ma P F, Liu W et al. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber[J]. Optics Express, 28, 20908-20919(2020).

    [195] Palma-Vega G, Jáuregui C, Hässner D et al. Mitigation of transverse mode instability by modal birefringence in polarization-maintaining fibers[J]. Optics Express, 31, 41301-41312(2023).

    [196] Palma-Vega G, Hässner D, Kuhn S et al. TMI and polarization static energy transfer in Yb-doped low-NA PM fibers[J]. Optics Express, 31, 24730-24738(2023).

    [197] Jáuregui-Misas C, Tu Y M, Kholaif S et al. Polarization instability in high power fiber amplifiers[J]. Proceedings of SPIE, 12865, 128650I(2024).

    [198] Wang G J, Song J X, Chen Y S et al. Six kilowatt record all-fiberized and narrow-linewidth fiber amplifier with near-diffraction-limited beam quality[J]. High Power Laser Science and Engineering, 10, e22(2022).

    [199] Wu H S, Li R X, Xiao H et al. High-power tandem-pumped fiber amplifier with beam quality maintenance enabled by the confined-doped fiber[J]. Optics Express, 29, 31337-31347(2021).

    [200] Seah C P, Lim W Y W, Chua S L. A 4 kW fiber amplifier with good beam quality employing confined-doped gain fiber[C], AM2A.2-8(2018).

    [201] Wu H S, Li H B, An Y et al. Transverse mode instability mitigation in a high-power confined-doped fiber amplifier with good beam quality through seed laser control[J]. High Power Laser Science and Engineering, 10, e44(2022).

    [202] Li R X, Li H B, Wu H S et al. Mitigation of TMI in an 8 kW tandem pumped fiber amplifier enabled by inter-mode gain competition mechanism through bending control[J]. Optics Express, 31, 24423-24436(2023).

    [203] Wu H S, Li R X, Xiao H et al. First demonstration of a bidirectional tandem-pumped high-brightness 8 kW level confined-doped fiber amplifier[J]. Journal of Lightwave Technology, 40, 5673-5681(2022).

    [204] Tao R M, Ma P F, Wang X L et al. Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers[J]. Laser Physics Letters, 14, 025002(2017).

    [205] Jauregui C, Otto H J, Stutzki F et al. Passive mitigation strategies for mode instabilities in high-power fiber laser systems[J]. Optics Express, 21, 19375-19386(2013).

    [206] Xu J M, Zhang Y, Ma X Y et al. Research progress of low-quantum-defect fiber laser at 1 μm band (invited)[J]. Infrared and Laser Engineering, 52, 20230267(2023).

    [207] AlYahyaei K, Zhu X S, Li L Z et al. Ultralow-quantum-defect single-frequency fiber laser[J]. Optics Letters, 48, 3817-3820(2023).

    [208] Ma X Y, Xu J M, Ye J et al. Cladding-pumped Raman fiber laser with 0.78% quantum defect enabled by phosphorus-doped fiber[J]. High Power Laser Science and Engineering, 10, e8(2022).

    [209] Ma X Y, Ye J, Zhang Y et al. Hundred-watt-level phosphosilicate Raman fiber laser with less than 1% quantum defect[J]. Optics Letters, 46, 2662-2665(2021).

    [210] Zhang Y, Xu J M, Liang J R et al. High power cladding-pumped low quantum defect Raman fiber amplifier[J]. Photonics Research, 12, 995-1003(2024).

    [211] Ballato J, Hawkins T, Foy P et al. On the fabrication of all-glass optical fibers from crystals[J], 105, 053110(2009).

    [212] Dragic P D, Ballato J, Hawkins T et al. Feasibility study of Yb∶YAG-derived silicate fibers with large Yb content as gain media[J]. Optical Materials, 34, 1294-1298(2012).

    [213] Dragic P, Law P C, Ballato J et al. Brillouin spectroscopy of YAG-derived optical fibers[J]. Optics Express, 18, 10055-10067(2010).

    [214] Dong L, Ballato J, Kolis J. Power scaling limits of diffraction-limited fiber amplifiers considering transverse mode instability[J]. Optics Express, 31, 6690-6703(2023).

    [215] Wei Y X, Peng W N, Li J W et al. 208 W single-frequency 1064 nm laser based on a single-crystal fiber master-oscillator power amplifier[J]. Optics Letters, 49, 1664-1667(2024).

    [216] Ren B, Chang H X, Li C et al. Coherent beam combining of two all-PM thulium-doped fiber chirped pulse amplifiers[J]. Frontiers of Optoelectronics, 17, 14(2024).

    [217] Wellmann F, Bode N N, Wessels P et al. Low noise 400 W coherently combined single frequency laser beam for next generation gravitational wave detectors[J]. Optics Express, 29, 10140-10149(2021).

    [218] Ma P F, Chang H X, Ma Y X et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array[J]. Optics & Laser Technology, 140, 107016(2021).

    [219] Müller M, Aleshire C, Klenke A et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 45, 3083-3086(2020).

    [220] Chang H X, Chang Q, Xi J C et al. First experimental demonstration of coherent beam combining of more than 100 beams[J]. Photonics Research, 8, 1943-1948(2020).

    [221] Liu Z J, Ma P F, Su R T et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect[J]. Journal of the Optical Society of America B, 34, A7-A14(2016).

    [222] Stark H, Buldt J, Müller M et al. 1 kW, 10 mJ, 120 fs coherently combined fiber CPA laser system[J]. Optics Letters, 46, 969-972(2021).

    [223] Stark H, Benner M, Buldt J et al. Pulses of 32 mJ and 158 fs at 20-kHz repetition rate from a spatiotemporally combined fiber laser system[J]. Optics Letters, 48, 3007-3010(2023).

    Hanshuo Wu, Cheng Yang, Haobo Li, Zhiyong Pan, Liangjin Huang, Shuai Ren, Yue Tao, Xiaolin Wang, Pu Zhou. Research Progress on High‐Power Linearly‐Polarized Fiber Lasers[J]. Chinese Journal of Lasers, 2025, 52(6): 0600001
    Download Citation