[2] Tang H, Shen Y, Long L Y. Analysis and prospects for development of laser science and technology in China from the perspective of national science foundation of China[J]. Chinese Journal of Lasers, 50, 0200001(2023).
[3] Zhou P. Review on the discipline of high power fiber laser in China[J]. Infrared and Laser Engineering, 52, 20230071(2023).
[4] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 0904123(2014).
[5] Shi W, Fang Q, Zhu X S et al. Fiber lasers and their applications[J]. Applied Optics, 53, 6554-6568(2014).
[6] Zhou P, Huang L, Xu J M et al. High power linearly polarized fiber laser: generation, manipulation and application[J]. Science China Technological Sciences, 60, 1784-1800(2017).
[7] Agrawal G P[M]. Nonlinear fiber optics(2007).
[8] Tao R M, Ma P F, Wang X L et al. Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers[J]. Journal of Optics, 18, 065501(2016).
[9] Ren S, Wang G J, Li W et al. 3 kW power-level all-fiberized superfluorescent fiber source with linear polarization and near-diffraction-limited beam quality[J]. Applied Optics, 61, 3952-3956(2022).
[10] Zhou P, Leng J Y, Xiao H et al. High average power fiber lasers: research progress and future prospect[J]. Chinese Journal of Lasers, 48, 2000001(2021).
[11] Qi Z N, Yin T C, Jiang X G et al. Narrow-linewidth high-efficiency single-frequency ytterbium-doped fiber laser with highly linear polarization at 1064 nm[J]. Applied Optics, 60, 2833-2838(2021).
[12] Liem A, Limpert J, Zellmer H et al. 100-W single-frequency master-oscillator fiber power amplifier[J]. Optics Letters, 28, 1537-1539(2003).
[13] Jeong Y, Nilsson J, Sahu J K et al. Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power[J]. Optics Letters, 30, 459-461(2005).
[14] Zhang L, Cui S Z, Liu C et al. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier[J]. Optics Express, 21, 5456-5462(2013).
[15] Ma P F, Zhou P, Ma Y X et al. Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality[J]. Applied Optics, 52, 4854-4857(2013).
[16] Huang L, Wu H S, Li R X et al. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier[J]. Optics Letters, 42, 1-4(2017).
[17] Huang L, Lai W C, Ma P F et al. Tapered Yb-doped fiber enabled monolithic high-power linearly polarized single-frequency laser[J]. Optics Letters, 45, 4001-4004(2020).
[18] Dixneuf C, Guiraud G, Bardin Y V et al. Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm[J]. Optics Express, 28, 10960-10969(2020).
[19] Hochheim S, Brockmüller E, Wessels P et al. Single-frequency 336 W spliceless all-fiber amplifier based on a chirally-coupled-core fiber for the next generation of gravitational wave detectors[J]. Journal of Lightwave Technology, 40, 2136-2143(2022).
[20] Jiang W P, Yang C S, Zhao Q L et al. 650 W all-fiber single-frequency polarization-maintaining fiber amplifier based on hybrid wavelength pumping and tapered Yb-doped fibers[J]. Photonics, 9, 518(2022).
[21] Zhou P, Ma P F, Ren S et al. High-power narrow linewidth fiber laser: progress and prospect[J]. Information Countermeasure Technology, 2, 16-36(2023).
[22] Shi W, Fang Q, Fan J L et al. High power monolithic linearly polarized narrow linewidth single mode fiber laser at 1064 nm[C]. Republic of Korea, 24-28(2015).
[23] Ran Y, Tao R M, Ma P F et al. 560 W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality[J]. Applied Optics, 54, 7258-7263(2015).
[24] Jiang M, Xu H Y, Zhou P et al. All-fiber, narrow linewidth and linearly polarized fiber laser in a single-mode-multimode-single-mode cavity[J]. Applied Optics, 55, 6121-6124(2016).
[25] Ma P F, Tao R M, Su R T et al. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 24, 4187-4195(2016).
[26] Jiang M, Ma P F, Huang L et al. kW-level, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme[J]. High Power Laser Science and Engineering, 5, e30(2017).
[27] Su R T, Tao R M, Wang X L et al. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression[J]. Laser Physics Letters, 14, 085102(2017).
[28] Meng D, Lai W, He X et al. Kilowatt-level, mode-instability-free, all-fiber and polarization-maintained amplifier with spectral linewidth of 1.8 GHz[J]. Laser Physics, 29, 035103(2019).
[29] Platonov N, Yagodkin R, de la Cruz J et al. Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format[J]. Proceedings of SPIE, 10512, 105120E(2018).
[30] Wang Y S, Chang Z, Sun Y H et al. 47 GHz narrow linewidth linear polarized fiber amplifier injected by a simple fiber oscillator laser seed source[J]. Proceedings of SPIE, 10811, 108110B(2018).
[31] Chang Z, Wang Y S, Sun Y H et al. 1.5 kW polarization-maintained Yb-doped amplifier with 13 GHz linewidth by suppressing the self-pulsing and stimulated Brillouin scattering[J]. Applied Optics, 58, 6419-6425(2019).
[32] Wang Y S, Ma Y, Sun Y H et al. 2.62-kW, 30-GHz linearly polarized all-fiber laser with narrow linewidth and near-diffraction-limit beam quality[J]. Chinese Journal of Lasers, 46, 1215001(2019).
[33] Wang Y S, Ke W W, Peng W J et al. 3 kW, 0.2 nm narrow linewidth linearly polarized all-fiber laser based on a compact MOPA structure[J]. Laser Physics Letters, 17, 075101(2020).
[34] Chu Q H, Guo C, Shu Q et al. 21.7 GHz linewidth polarization maintaining fiber laser achieves 3.22 kW near diffraction limit output[J]. Chinese Journal of Lasers, 48, 1716001(2021).
[35] Goodno G D. Linewidth narrowing of a high power polarization maintaining fiber amplifier using nonlinear phase demodulation[C], SM4K.1-14(2021).
[36] Ren S, Ma P F, Li W et al. 3.96 kW all-fiberized linearly polarized and narrow linewidth fiber laser with near-diffraction-limited beam quality[J]. Nanomaterials, 12, 2541(2022).
[37] Wang Y S, Peng W J, Wang J et al. 4.45 kW narrow linewidth linearly polarized near-single mode all-fiber laser[J]. Chinese Journal of Lasers, 49, 1816003(2022).
[38] Wang Y S, Peng W J, Liu H et al. Linearly polarized fiber amplifier with narrow linewidth of 5 kW exhibiting a record output power and near-diffraction-limited beam quality[J]. Optics Letters, 48, 2909-2912(2023).
[39] Wang Y S, Peng W J, Wang J et al. Output of 5 kW 10 GHz narrow linewidth linear polarization near-single-mode fiber laser[J]. Chinese Journal of Lasers, 50, 2416002(2023).
[40] Liao S B, Luo T, Xiao R H et al. 3.2 kW, 0.22 nm narrow-linewidth MOPA configuration fiber laser with a homemade polarization-maintaining Yb-doped fiber[J]. Frontiers in Physics, 11, 1134745(2023).
[41] Liao S B, Luo T, Xiao R H et al. 4.6 kW linearly polarized and narrow-linewidth monolithic fiber amplifier based on a fiber oscillator laser seed[J]. Optics Letters, 48, 6533-6536(2023).
[42] Ren S, Ma P F, Chen Y S et al. 5 kW-level narrow linewidth fiber laser output realized by homemade polarization-maintained fiber[J]. Infrared and Laser Engineering, 52, 20220900(2023).
[43] Xu Y, Fang Q, Cui X L et al. 1.6‑kW 8‑GHz linearly‑polarized narrow‑linewidth all‑fiber laser[J]. Chinese Journal of Lasers, 51, 1301012(2024).
[44] Liem A, Limpert J, Schreiber T et al. High power linearly polarized fiber laser[C](2004).
[45] Liu C H, Galvanauskas A, Khitrov V et al. High-power single-polarization and single-transverse-mode fiber laser with an all-fiber cavity and fiber-grating stabilized spectrum[J]. Optics Letters, 31, 17-19(2006).
[46] Jeong Y, Nilsson J, Sahu J K et al. Single-mode plane-polarized ytterbium-doped large-core fiber laser with 633-W continuous-wave output power[J]. Optics Letters, 30, 955-957(2005).
[47] Fitzau O, Geiger J, Hoffmann H D. Experimental and theoretical studies on kW class polarized fiber lasers for cw operation[J]. Proceedings of SPIE, 7195, 719509(2009).
[48] Belke S, Becker F, Neumann B et al. Completely monolithic linearly polarized high-power fiber laser oscillator[J]. Proceedings of SPIE, 8961, 896124(2014).
[49] Huang L, Ma P F, Tao R M et al. 1.5 kW ytterbium-doped single-transverse-mode, linearly polarized monolithic fiber master oscillator power amplifier[J]. Applied Optics, 54, 2880-2884(2015).
[50] Wang P, Clarkson W A. High-power, single-mode, linearly polarized, ytterbium-doped fiber superfluorescent source[J]. Optics Letters, 32, 2605-2607(2007).
[51] Ma P F, Huang L, Wang X L et al. High power broadband all fiber super-fluorescent source with linear polarization and near diffraction-limited beam quality[J]. Optics Express, 24, 1082-1088(2016).
[52] Chen Q, Ren S, Liu W et al. All-fiberized linearly polarized superfluorescent fiber source with 5 kW power output[J]. Applied Optics, 62, 6911-6915(2023).
[53] Li B, Chen S P, Li J S et al. Review of linearly polarized supercontinuum[J]. Acta Optica Sinica, 43, 1719003(2023).
[54] Lehtonen M, Genty G, Ludvigsen H et al. Supercontinuum generation in a highly birefringent microstructured fiber[J]. Applied Physics Letters, 82, 2197-2199(2003).
[55] Zhu Z M, Brown T. Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber[J]. Optics Express, 12, 791-796(2004).
[56] Yu Y Q, Ruan S C, Du C L et al. Spectral broadening using a polarization-maintaining photonic crystal fiber by an optical parametric amplifier[J]. Proceedings of SPIE, 6025, 602507(2006).
[57] Xiong C, Wadsworth W J. Polarized supercontinuum in birefringent photonic crystal fibre pumped at 1064 nm and application to tuneable visible/UV generation[J]. Optics Express, 16, 2438-2445(2008).
[58] Yan P G, Shu J, Ruan S C et al. Polarization dependent visible supercontinuum generation in the nanoweb fiber[J]. Optics Express, 19, 4985-4990(2011).
[59] Zhao Y Y, Zhou G Y, Li J S et al. Supercontinuum experimental study of V-type photonic crystal fiber with high birefringence[J]. Acta Physica Sinica, 62, 214212(2013).
[60] Tarnowski K, Martynkien T, Mergo P et al. Polarized all-normal dispersion supercontinuum reaching 2.5 µm generated in a birefringent microstructured silica fiber[J]. Optics Express, 25, 27452-27463(2017).
[61] Xiong M J, Li J Y, Luo X et al. Experimental and numerical study of tuneable supercontinuum generation in new kind of highly birefringent photonic crystal fiber[J]. Acta Physica Sinica, 66, 094204(2017).
[62] Tao Y, Chen S P. All-fiber high-power linearly polarized supercontinuum generation from polarization-maintaining photonic crystal fibers[J]. High Power Laser Science and Engineering, 7, e28(2019).
[63] Tao Y, Chen S P, Xu H. Hundred-watt level linearly polarized visible supercontinuum generation[J]. Optics Express, 27, 26044-26049(2019).
[64] Tarnowski K, Martynkien T, Mergo P et al. Compact all-fiber source of coherent linearly polarized octave-spanning supercontinuum based on normal dispersion silica fiber[J]. Scientific Reports, 9, 12313(2019).
[65] Genier E, Grelet S, Engelsholm R D et al. Ultra-flat, low-noise, and linearly polarized fiber supercontinuum source covering 670-1390 nm[J]. Optics Letters, 46, 1820-1823(2021).
[66] Ali Rezvani S, Ogawa K, Fuji T K. Highly coherent multi-octave polarization-maintained supercontinuum generation solely based on ZBLAN fibers[J]. Optics Express, 28, 29918-29926(2020).
[67] Zhang B, Jin A J, Ma P F et al. High-power near-infrared linearly-polarized supercontinuum generation in a polarization-maintaining Yb-doped fiber amplifier[J]. Optics Express, 23, 28683-28690(2015).
[68] Shen R, Fang H, Zhao J Q et al. Over 10 W linearly polarized supercontinuum directly produced in an erbium-doped fiber MOPA seeded with stretched soliton[J]. Applied Optics, 60, 257-263(2021).
[69] Li B, Zhao G M, Li J S et al. Over three hundred Watts linearly-polarized supercontinuum laser source[J]. Optics & Laser Technology, 175, 110775(2024).
[70] He J R, Song R, Jiang L et al. Supercontinuum generated in an all-polarization-maintaining random fiber laser structure[J]. Optics Express, 29, 28843-28851(2021).
[71] Zhang S, Jiang M, Li C et al. High-power broadband supercontinuum generation through a simple narrow-bandwidth FBGs-based fiber laser cavity[J]. Chinese Optics Letters, 20, 011405(2022).
[72] Yang C S, Xu S H, Mo S P et al. 10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm[J]. Optics Express, 21, 12546-12551(2013).
[73] Zhang Y N, Zhang Y F, Zhao Q L et al. Ultra-narrow linewidth full C-band tunable single-frequency linear-polarization fiber laser[J]. Optics Express, 24, 26209-26214(2016).
[74] Fujita E, Mashiko Y, Asaya S et al. High power narrow-linewidth linearly-polarized 1610 nm Er ∶Yb all-fiber MOPA[J]. Optics Express, 24, 26255-26260(2016).
[75] Yang C S, Guan X C, Lin W et al. Efficient 1.6 μm linearly-polarized single-frequency phosphate glass fiber laser[J]. Optics Express, 25, 29078-29085(2017).
[76] De Varona O, Fittkau W, Booker P et al. Single-frequency fiber amplifier at 1.5 µm with 100 W in the linearly-polarized TEM00 mode for next-generation gravitational wave detectors[J]. Optics Express, 25, 24880-24892(2017).
[77] Yang C S, Guan X C, Zhao Q L et al. 15 W high OSNR kHz-linewidth linearly-polarized all-fiber single-frequency MOPA at 1.6 μm[J]. Optics Express, 26, 12863-12869(2018).
[78] Huang J M, Zhao Q L, Zheng J J et al. A 102 W high-power linearly-polarized all-fiber single-frequency laser at 1560 nm[J]. Photonics, 9, 396(2022).
[79] Pearson L, Shen D Y, Sahu J K et al. High-power widely-tunable thulium-doped fiber master-oscillator power-amplifier around 2 μm[C], CFD6(2008).
[80] Pearson L, Kim J W, Zhang Z et al. High-power linearly-polarized single-frequency thulium-doped fiber master-oscillator power-amplifier[J]. Optics Express, 18, 1607-1612(2010).
[81] Shah L, Sims R A, Kadwani P et al. Integrated Tm∶fiber MOPA with polarized output and narrow linewidth with 100 W average power[J]. Optics Express, 20, 20558-20563(2012).
[82] Liu J, Shi H X, Liu K et al. 210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA[J]. Optics Express, 22, 13572-13578(2014).
[83] Shah L, Sims R A, Kadwani P et al. High-power spectral beam combining of linearly polarized Tm: fiber lasers[J]. Applied Optics, 54, 757-762(2015).
[84] Shi H X, Liu J, Liu K et al. Hundred-watt-level linearly-polarized diode-seeded nanosecond thulium-doped fiber laser[J]. Chinese Journal of Lasers, 42, 0802005(2015).
[85] Wang J C, Yeom D I, Lee S B et al. 28W CW linearly polarized single mode all-fiber thulium-doped fiber laser operating at 1.95 μm[J]. Optical Engineering, 56, 046108(2017).
[86] Guan X C, Yang C S, Gu Q et al. 55 W kilohertz-linewidth core- and in-band-pumped linearly polarized single-frequency fiber laser at 1950 nm[J]. Optics Letters, 45, 2343-2346(2020).
[87] Bolingbroke G N, Oermann M, Ng S W S et al. High-efficiency, single-frequency, polarized thulium-doped silica fiber lasers[J]. Optics Letters, 49, 4362-4365(2024).
[88] Baer P, Cebeci P, Reiter M et al. Ultra-Low-Noise, Single-Frequency, All-PM Thulium- and Holmium-Doped Fiber Amplifiers at 1950 nm and 2090 nm for Third-Generation Gravitational Wave Detectors[J]. IEEE Photonics Journal, 16, 1500809(2024).
[89] Wang J Z, Wen B L, Chen X Z et al. All-polarization-maintaining Ho-doped fiber oscillator mode-locked with nonlinear polarization evolution[J]. Optics Letters, 49, 133-136(2024).
[90] Tench R E, Romano C, Williams G M et al. Two-stage performance of polarization-maintaining holmium-doped fiber amplifiers[J]. Journal of Lightwave Technology, 37, 1434-1439(2019).
[91] Tench R E, Romano C, Delavaux J M et al. In-depth studies of the spectral bandwidth of a 25 W 2 μm band PM hybrid Ho- and Tm-doped fiber amplifier[J]. Journal of Lightwave Technology, 38, 2456-2463(2020).
[92] Baer P, Cebeci P, Reiter M et al. 10 W-class, narrow-linewidth, linearly polarized, low-noise holmium-doped fiber amplifier at 2095 nm[J]. Optics Continuum, 3, 1302-1310(2024).
[93] Kurkov A S. Oscillation spectral range of Yb-doped fiber lasers[J]. Laser Physics Letters, 4, 93-102(2007).
[94] Zhou P, Wang X, Xiao H et al. Review on recent progress on Yb-doped fiber laser in a variety of oscillation spectral ranges[J]. Laser Physics, 22, 823-831(2012).
[95] Sinha S, Urbanek K E, Hum D S et al. Linearly polarized, 3.35 W narrow-linewidth, 1150 nm fiber master oscillator power amplifier for frequency doubling to the yellow[J]. Optics Letters, 32, 1530-1532(2007).
[96] Kashiwagi M, Takenaga K, Ichii K et al. Over 10 W output linearly-polarized single-stage fiber laser oscillating above 1160 nm using Yb-doped polarization-maintaining solid photonic bandgap fiber[J]. IEEE Journal of Quantum Electronics, 47, 1136-1141(2011).
[97] Wang J H, Hu J M, Zhang L et al. A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm[J]. Optics Express, 20, 28373-28378(2012).
[98] Huang L, Zhang H W, Wang X L et al. A high-power LD-pumped linearly polarized Yb-doped fiber laser operating at 1152 nm with 42 GHz narrow linewidth and 18 dB PER[J]. Laser Physics, 26, 075105(2016).
[99] Liu X J, Huang B C, Han K Z et al. High power linearly polarized narrow linewidth ytterbium doped fiber laser at 1120 nm[C], 24-27(2016).
[100] Yang C S, Zhao Q L, Feng Z M et al. 1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser[J]. Optics Express, 24, 29794-29799(2016).
[101] Tao Y, Jiang M, Li C et al. Low-threshold 1150 nm single-polarization single-frequency Yb-doped DFB fiber laser[J]. Optics Letters, 46, 3705-3708(2021).
[102] Chen Y G, Lin Z Q, Sun H T et al. High-power lasing at ∼900 nm in Nd3+-doped fiber: a direct coordination engineering approach to enhance fluorescence[J]. Optica, 10, 905-912(2023).
[103] Corre K L, Robin T, Barnini A et al. Linearly-polarized pulsed Nd-doped fiber MOPA at 905 nm and frequency conversion to deep-UV at 226 nm[J]. Optics Express, 29, 4240-4248(2021).
[104] Le Corre K, Barnini A, Robin T et al. Watt-level deep-UV subnanosecond laser system based on Nd-doped fiber at 229 nm[J]. Optics Letters, 48, 1276-1279(2023).
[105] Skubchenko S A, Vyatkin M Y, Gapontsev D V. High-power CW linearly polarized all-fiber Raman laser[J]. IEEE Photonics Technology Letters, 16, 1014-1016(2004).
[106] Wang J H, Zhang L, Zhou J et al. High power linearly polarized Raman fiber laser at 1120 nm[J]. Chinese Optics Letters, 10, 21406-21408(2012).
[107] Zhang L, Hu J M, Wang J H et al. Stimulated-Brillouin-scattering-suppressed high-power single-frequency polarization-maintaining Raman fiber amplifier with longitudinally varied strain for laser guide star[J]. Optics Letters, 37, 4796-4798(2012).
[108] Surin A A, Larin S V, Surin A A. 14 W SHG in MgO: sPPLT at 589 nm from high power CW linearly polarized RFL[C](2014).
[109] Chen M C, Shirakawa A, Olausson C B et al. 87 W, narrow-linewidth, linearly-polarized 1178 nm photonic bandgap fiber amplifier[J]. Optics Express, 23, 3134-3141(2015).
[110] Ma P F, Zhang H W, Huang L et al. Kilowatt-level near-diffraction-limited and linear-polarized Ytterbium-Raman hybrid nonlinear amplifier based on polarization selection loss mechanism[J]. Optics Express, 23, 26499-26508(2015).
[111] Lobach I A, Kablukov S I, Babin S A. Linearly polarized cascaded Raman fiber laser with random distributed feedback operating beyond 1.5 μm[J]. Optics Letters, 42, 3526-3529(2017).
[112] Zlobina E A, Kablukov S I, Babin S A. Linearly polarized random fiber laser with ultimate efficiency[J]. Optics Letters, 40, 4074-4077(2015).
[113] Surin A A, Borisenko T E, Larin S V. Generation of 14 W at 589 nm by frequency doubling of high-power CW linearly polarized Raman fiber laser radiation in MgO∶sPPLT crystal[J]. Optics Letters, 41, 2644-2647(2016).
[114] Lou Z K, Xu J M, Huang L et al. Linearly-polarized random distributed feedback Raman fiber laser with record power[J]. Laser Physics Letters, 14, 055102(2017).
[115] Xu J M, Huang L, Jiang M et al. Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output[J]. Photonics Research, 5, 350-354(2017).
[116] Xu J M, Lou Z K, Ye J et al. Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects[J]. Optics Express, 25, 5609-5617(2017).
[117] Song J X, Wu H S, Ye J et al. High power linearly polarized Raman fiber laser with stable temporal output[J]. Photonic Sensors, 9, 43-48(2019).
[118] Liu Y K, Su R T, Ma P F et al. >1 kW all-fiberized narrow-linewidth polarization-maintained fiber amplifiers with wavelength spanning from 1065 nm to 1090 nm[J]. Applied Optics, 56, 4213-4218(2017).
[119] Song J X, Wu H S, Xu J M et al. High-power linearly-polarized tunable Raman fiber laser[J]. Chinese Physics B, 27, 094209(2018).
[120] Wu H S, Song J X, Ye J et al. Hundred-watt-level linearly polarized tunable Raman random fiber laser[J]. Chinese Optics Letters, 16, 061402(2018).
[121] Wu H S, Wang P, Song J X et al. High power tunable mid-infrared optical parametric oscillator enabled by random fiber laser[J]. Optics Express, 26, 6446-6455(2018).
[122] Ye J, Xu J M, Song J X et al. Flexible spectral manipulation property of a high power linearly polarized random fiber laser[J]. Scientific Reports, 8, 2173(2018).
[123] Thouroude R, Gilles H, Cadier B et al. Linearly-polarized high-power Raman fiber lasers near 1670 nm[J]. Laser Physics Letters, 16, 025102(2019).
[124] Liu G X, Feng D J. Single- and dual-wavelength switchable linear polarized Yb3+-doped double-clad fiber laser[J]. Applied Optics, 54, 4309-4312(2015).
[125] Liu X J, Huang B C, Wei G X et al. High power switchable dual-wavelength linear polarized Yb-dozped fiber laser around 1120 nm[J]. Journal of the Optical Society of Korea, 20, 716-721(2016).
[126] Wu H S, Wu J, Huang L et al. High power, multiwavelength, linearly polarized ytterbium-doped fiber laser based on Sagnac fiber loop mirrors[J]. High Power Laser and Particle Beams, 29, 041002(2017).
[127] Liang J R, Xu J M, Zhang Y et al. Hundred-watt-level, linearly polarized multi-wavelength fiber oscillator with wavelength, interval, and intensity tunability[J]. Journal of Lightwave Technology, 42, 882-890(2024).
[128] Lobach I A, Kablukov S I, Podivilov E V et al. Broad-range self-sweeping of a narrow-line self-pulsing Yb-doped fiber laser[J]. Optics Express, 19, 17632-17640(2011).
[129] Kir’yanov A V, Il’ichev N N. Self-induced laser line sweeping in an ytterbium fiber laser with non-resonant Fabry-Perot cavity[J]. Laser Physics Letters, 8, 305(2011).
[130] Budarnykh A E, Vladimirskaya A D, Lobach I A et al. Broad-range self-sweeping single-frequency linearly polarized Tm-doped fiber laser[J]. Optics Letters, 43, 5307-5310(2018).
[131] Wang K L, Wen Z R, Chen H W et al. Observation of reverse self-sweeping effect in an all-polarization-maintaining bidirectional ytterbium-doped fiber laser[J]. Optics Express, 28, 13913-13920(2020).
[132] Wang K L, Wen Z R, Chen H W et al. Wavelength-flexible all-polarization-maintaining self-sweeping fiber laser based on intracavity loss tuning[J]. Chinese Optics Letters, 19, 041401(2021).
[133] Vladimirskaya A D, Kamynin V A, Lobach I A et al. Robust operation of linearly polarized broad-range self-sweeping Ho-doped fiber laser[J]. Laser Physics Letters, 18, 075101(2021).
[134] Luo Z Q, Song L M, Ruan Q J. Progress in research on visible rare-earth-doped fiber lasers: from continuous wave to femtosecond pulses (invited)[J]. Chinese Journal of Lasers, 51, 0101001(2024).
[135] Li J F, Lei H, Wang S Y et al. Research progress in 2‒5 μm all-solid-state mid-infrared high-power fiber laser sources (invited)[J]. Chinese Journal of Lasers, 51, 0101005(2024).
[136] Liu A P, Norsen M A, Mead R D. 60-W green output by frequency doubling of a polarized Yb-doped fiber laser[J]. Optics Letters, 30, 67-69(2005).
[137] Su M Q, You Y, Quan Z et al. 321 W high-efficiency continuous-wave green laser produced by single-pass frequency doubling of narrow-linewidth fiber laser[J]. Applied Optics, 60, 3836-3841(2021).
[138] Dong Z P, Wang H, Jia W C et al. All-polarization-maintaining, mode-locked 488 nm picosecond laser[J]. IEEE Photonics Technology Letters, 35, 283-286(2023).
[139] Shang Y P, Xu J M, Wang P et al. Ultra-stable high-power mid-infrared optical parametric oscillator pumped by a super-fluorescent fiber source[J]. Optics Express, 24, 21684-21692(2016).
[140] He Y, Ji Y H, Wan H H et al. High-power mid-infrared pulse MgO∶PPLN optical parametric oscillator pumped by linearly polarized Yb-doped all-fiber laser[J]. Optics & Laser Technology, 146, 107545(2022).
[141] Luo H Y, Wang Y Z, Li J F et al. High-stability, linearly polarized mode-locking generation from a polarization-maintaining fiber oscillator around 2.8 µm[J]. Optics Letters, 46, 4550-4553(2021).
[142] Wang Y Z, Luo H Y, Gong H T et al. 2.3 W, linearly-polarized superfluorescent generation from a polarization-maintaining Er3+-doped fluoride fiber amplifier around 2.8 μm[J]. Journal of Lightwave Technology, 40, 6001-6005(2022).
[143] Yu L P, Liang J H, Tang Z Y et al. Generation of mid-infrared noise-like pulses from a polarization-maintaining fluoride fiber oscillator[J]. Advanced Photonics Research, 4, 2300135(2023).
[144] Burian M, Marmiroli B, Radeticchio A et al. Picosecond pump-probe X-ray scattering at the Elettra SAXS beamline[J]. Journal of Synchrotron Radiation, 27, 51-59(2020).
[145] Yang D D, Cai J H. Research progress of micro-nano fabrication by picosecond laser[J]. Laser & Optoelectronics Progress, 54, 010004(2017).
[146] Zhang H F, Long M L, Deng H R et al. Developments of space debris laser ranging technology including the applications of picosecond lasers[J]. Applied Sciences, 11, 10080(2021).
[147] Ye C G, Gong M L, Yan P et al. Linearly-polarized single-transverse-mode high-energy multi-ten nanosecond fiber amplifier with 50 W average power[J]. Optics Express, 14, 7604-7609(2006).
[148] He J, Yan P, Wushouer X et al. 72-kW high-peak-power linearly-polarized single-mode pulsed fiber laser with 80 kHz repetition rate and 4.5 ns duration[J]. Laser Physics, 21, 180-183(2011).
[149] Su R T, Xu J M, Zhou P et al. Single-frequency linearly-polarized 1083 nm all fiber nanosecond laser[J]. Applied Physics B, 109, 617-620(2012).
[150] Shi C, Huang L, Wang X L et al. 5 kW High peak power, 0.2 mJ high pulse energy, linearly-polarized pulsed laser from a single all-fiber oscillator[J]. Optics & Laser Technology, 75, 24-28(2015).
[151] Ran Y, Su R T, Ma P F et al. 293 W, GHz narrow-linewidth, polarization maintaining nanosecond fiber amplifier with SBS suppression employing simultaneous phase and intensity modulation[J]. Optics Express, 23, 25896-25905(2015).
[152] Huang L, Ma P F, Meng D R et al. Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality[J]. High Power Laser Science and Engineering, 6, e42(2018).
[153] Huang L, Ma P F, Su R T et al. Comprehensive investigation on the power scaling of a tapered Yb-doped fiber-based monolithic linearly polarized high-peak-power near-transform-limited nanosecond fiber laser[J]. Optics Express, 29, 761-782(2021).
[154] Zhang K, Zhou S H, Li Y et al. 142 W high peak power narrow-linewidth linearly polarized pulsed fiber laser[J]. Infrared and Laser Engineering, 49, 0453000(2020).
[155] Hemming A, Richards J, Simakov N et al. Pulsed operation of a resonantly pumped, linearly polarised, large mode area holmium-doped fibre amplifier[J]. Optics Express, 22, 7186-7193(2014).
[156] Yang J L, Wang Y, Zhang G et al. High-power highly linear-polarized nanosecond all-fiber MOPA at 2040 nm[J]. IEEE Photonics Technology Letters, 27, 986-989(2015).
[157] Shi J D, Wei L, Li Y F et al. Monolithic 2-µm single-frequency linearly-polarized gain-switched distributed feedback fiber laser by femtosecond laser direct-writing[J]. Optics Express, 31, 39292-39306(2023).
[158] Jain D, Alam S, Codemard C et al. High power, compact, picosecond MOPA based on single trench fiber with single polarized diffraction-limited output[J]. Optics Letters, 40, 4150-4153(2015).
[159] Wang J L, Lu J Q, Zhang N et al. An all-fiber high-power picosecond amplifier with Yb-doped polarization-maintaining tapered fiber[J]. Laser Physics, 33, 035102(2023).
[160] Yu H L, Ma P F, Wang X L et al. Coherent polarization beam combination of two mode-locked picosecond pulses with broadband spectra[C], AM5A.21-21(2014).
[161] Ma P F, Tao R M, Huang L et al. 608 W average power picosecond all fiber polarization-maintained amplifier with narrow-band and near-diffraction-limited beam quality[J]. Journal of Optics, 17, 075501(2015).
[162] Li W, Ma P F, Lai W C et al. Tapered active fiber simultaneously enabled 141 W high average and 1.3 MW high peak power via all-fiber and polarization-maintained picosecond amplifier[J]. Optics & Laser Technology, 152, 108166(2022).
[163] Zhang C, Chen S P, Li B et al. Narrow linewidth 49 W all fiber linearly polarized picosecond laser operating at 1016 nm[J]. IEEE Photonics Journal, 14, 1513307(2022).
[164] Fu C H, Song Y Q, Tao J N et al. All-PM Yb-doped mode-locked fiber laser with high single pulse energy and high repetition frequency[J]. Journal of Optics, 26, 075502(2024).
[165] Liu J, Liu C, Shi H X et al. High-power linearly-polarized picosecond thulium-doped all-fiber master-oscillator power-amplifier[J]. Optics Express, 24, 15005-15011(2016).
[166] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).
[167] Yan D Y, Liu B W, Song H Y et al. Research status and development trend of high power femtosecond fiber laser amplifiers[J]. Chinese Journal of Lasers, 46, 0508012(2019).
[168] Wan P, Yang L M, Liu J. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers[J]. Optics Express, 21, 29854-29859(2013).
[169] Kim K, Peng X, Lee W et al. Monolithic polarization maintaining fiber chirped pulse amplification (CPA) system for high energy femtosecond pulse generation at 1.03 µm[J]. Optics Express, 23, 4766-4770(2015).
[170] Yu H L, Wang X L, Zhang H W et al. Linearly-polarized fiber-integrated nonlinear CPA system for high-average-power femtosecond pulses generation at 1.06 μm[J]. Journal of Lightwave Technology, 34, 4271-4277(2016).
[171] Liu Y, Li W X, Luo D P et al. Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier[J]. Optics Express, 24, 10939-10945(2016).
[172] Chang H, Cheng Z C, Sun R Y et al. 172-fs, 27-µJ, Yb-doped all-fiber-integrated chirped pulse amplification system based on parabolic evolution by passive spectral amplitude shaping[J]. Optics Express, 27, 34103-34112(2019).
[173] Manchee C P K, Möller J, Miller R J D. Highly stable, 100 W average power from fiber-based ultrafast laser system at 1030 nm based on single-pass photonic-crystal rod amplifier[J]. Optics Communications, 437, 6-10(2019).
[174] Wang T, Li C, Ren B et al. All-fiber linearly polarized femtosecond fiber amplifier realizes 440 W power output[J]. Chinese Journal of Lasers, 49, 1716001(2022).
[175] Wang T, Ren S, Chang H X et al. High-power all-fiber linearly polarized Yb-doped chirped pulse amplifier based on active polarization control[J]. Chinese Optics Letters, 22, 041403(2024).
[176] Xiu H, Fan Y H, Lin W et al. 1200-W all polarization-maintaining fiber GHz-femtosecond-pulse laser with good beam quality[J]. Optics Express, 31, 41940-41951(2023).
[177] Gui Y, Yao L B, Gao C Y et al. Yb-doped ultrafast fiber laser system emitting >1.5 kW average power[J]. Proceedings of SPIE, 13209, 1320902(2024).
[178] Stolen R. Polarization effects in fiber Raman and Brillouin lasers[J]. IEEE Journal of Quantum Electronics, 15, 1157-1160(1979).
[179] Popov S, Vanin E. Polarization dependence of Raman gain on propagation direction of pump and probe signal in optical fibers[C], 146-147(2001).
[180] Spring J B, Russell T H, Shay T M et al. Comparison of stimulated Brillouin scattering thresholds and spectra in nonpolarization-maintaining and polarization-maintaining passive fibers[J]. Proceedings of SPIE, 5709, 147-156(2005).
[181] McElhenny J E, Pattnaik R, Toulouse J. Polarization dependence of stimulated Brillouin scattering in small-core photonic crystal fibers[J]. Journal of the Optical Society of America B, 25, 2107-2115(2008).
[182] Haarlammert N, Rekas M, de Vries O et al. Polarization dependent nonlinear limitations in continuous-wave high power fiber amplifiers[J]. Proceedings of SPIE, 8601, 86012W(2013).
[183] Guintrand C, Edgecumbe J, Farley K et al. Stimulated Brillouin scattering threshold variations due to bend-induced birefringence in a non-polarization-maintaining fiber amplifier[C], JW2A.23-13(2014).
[184] Song J X, Xu H Y, Ye J et al. A novel high-power all-fiberized flexible spectral filter for high power linearly-polarized Raman fiber laser[J]. Scientific Reports, 8, 10942(2018).
[185] Wang Y S, Peng W J, Feng Y J et al. Influence of injected signal polarization on SBS, SRS, spectral broadening, and self-pulsing properties in high-power fiber amplifier[J]. Laser Physics Letters, 19, 085102(2022).
[186] Liao S B, Luo T, Xiao R H et al. Stimulated Brillouin scattering induced mode degradation in high-power narrow-linewidth linearly polarized fiber amplifiers[J]. Optics & Laser Technology, 162, 109286(2023).
[187] Huang Z M, Shu Q, Tao R M et al. >5 kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 33, 1181-1184(2021).
[188] Wu H S, Song J X, Ma P F et al. Bidirectional tandem-pumped high-brightness 6 kW level narrow-linewidth confined-doped fiber amplifier exploiting the side-coupled technique[J]. Optics Express, 30, 21338-21348(2022).
[189] Cooper M A, Gausmann S, Antonio-Lopez J E et al. Confined doping LMA fibers for high power single frequency lasers[J]. Proceedings of SPIE, 11981, 1198106(2022).
[190] Kim J, Dupriez P, Codemard C et al. Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off[J]. Optics Express, 14, 5103-5113(2006).
[191] Li R X, Wu H S, Xiao H et al. Design and optimization methods towards a 10 kW high beam quality fiber laser based on the counter tandem pumping scheme[J]. High Power Laser Science and Engineering, 12, e38(2024).
[192] Brar K, Savage-Leuchs M, Henrie J et al. Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers[J]. Proceedings of SPIE, 8961, 89611R(2014).
[193] Jauregui-Misas C, Stihler C, Kholaif S E et al. Mitigation of transverse mode instability in polarization maintaining, high-power fiber amplifiers[J]. Proceedings of SPIE, 11665, 116650V(2021).
[194] Lai W C, Ma P F, Liu W et al. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber[J]. Optics Express, 28, 20908-20919(2020).
[195] Palma-Vega G, Jáuregui C, Hässner D et al. Mitigation of transverse mode instability by modal birefringence in polarization-maintaining fibers[J]. Optics Express, 31, 41301-41312(2023).
[196] Palma-Vega G, Hässner D, Kuhn S et al. TMI and polarization static energy transfer in Yb-doped low-NA PM fibers[J]. Optics Express, 31, 24730-24738(2023).
[197] Jáuregui-Misas C, Tu Y M, Kholaif S et al. Polarization instability in high power fiber amplifiers[J]. Proceedings of SPIE, 12865, 128650I(2024).
[198] Wang G J, Song J X, Chen Y S et al. Six kilowatt record all-fiberized and narrow-linewidth fiber amplifier with near-diffraction-limited beam quality[J]. High Power Laser Science and Engineering, 10, e22(2022).
[199] Wu H S, Li R X, Xiao H et al. High-power tandem-pumped fiber amplifier with beam quality maintenance enabled by the confined-doped fiber[J]. Optics Express, 29, 31337-31347(2021).
[200] Seah C P, Lim W Y W, Chua S L. A 4 kW fiber amplifier with good beam quality employing confined-doped gain fiber[C], AM2A.2-8(2018).
[201] Wu H S, Li H B, An Y et al. Transverse mode instability mitigation in a high-power confined-doped fiber amplifier with good beam quality through seed laser control[J]. High Power Laser Science and Engineering, 10, e44(2022).
[202] Li R X, Li H B, Wu H S et al. Mitigation of TMI in an 8 kW tandem pumped fiber amplifier enabled by inter-mode gain competition mechanism through bending control[J]. Optics Express, 31, 24423-24436(2023).
[203] Wu H S, Li R X, Xiao H et al. First demonstration of a bidirectional tandem-pumped high-brightness 8 kW level confined-doped fiber amplifier[J]. Journal of Lightwave Technology, 40, 5673-5681(2022).
[204] Tao R M, Ma P F, Wang X L et al. Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers[J]. Laser Physics Letters, 14, 025002(2017).
[205] Jauregui C, Otto H J, Stutzki F et al. Passive mitigation strategies for mode instabilities in high-power fiber laser systems[J]. Optics Express, 21, 19375-19386(2013).
[206] Xu J M, Zhang Y, Ma X Y et al. Research progress of low-quantum-defect fiber laser at 1 μm band (invited)[J]. Infrared and Laser Engineering, 52, 20230267(2023).
[207] AlYahyaei K, Zhu X S, Li L Z et al. Ultralow-quantum-defect single-frequency fiber laser[J]. Optics Letters, 48, 3817-3820(2023).
[208] Ma X Y, Xu J M, Ye J et al. Cladding-pumped Raman fiber laser with 0.78% quantum defect enabled by phosphorus-doped fiber[J]. High Power Laser Science and Engineering, 10, e8(2022).
[209] Ma X Y, Ye J, Zhang Y et al. Hundred-watt-level phosphosilicate Raman fiber laser with less than 1% quantum defect[J]. Optics Letters, 46, 2662-2665(2021).
[210] Zhang Y, Xu J M, Liang J R et al. High power cladding-pumped low quantum defect Raman fiber amplifier[J]. Photonics Research, 12, 995-1003(2024).
[211] Ballato J, Hawkins T, Foy P et al. On the fabrication of all-glass optical fibers from crystals[J], 105, 053110(2009).
[212] Dragic P D, Ballato J, Hawkins T et al. Feasibility study of Yb∶YAG-derived silicate fibers with large Yb content as gain media[J]. Optical Materials, 34, 1294-1298(2012).
[213] Dragic P, Law P C, Ballato J et al. Brillouin spectroscopy of YAG-derived optical fibers[J]. Optics Express, 18, 10055-10067(2010).
[214] Dong L, Ballato J, Kolis J. Power scaling limits of diffraction-limited fiber amplifiers considering transverse mode instability[J]. Optics Express, 31, 6690-6703(2023).
[215] Wei Y X, Peng W N, Li J W et al. 208 W single-frequency 1064 nm laser based on a single-crystal fiber master-oscillator power amplifier[J]. Optics Letters, 49, 1664-1667(2024).
[216] Ren B, Chang H X, Li C et al. Coherent beam combining of two all-PM thulium-doped fiber chirped pulse amplifiers[J]. Frontiers of Optoelectronics, 17, 14(2024).
[217] Wellmann F, Bode N N, Wessels P et al. Low noise 400 W coherently combined single frequency laser beam for next generation gravitational wave detectors[J]. Optics Express, 29, 10140-10149(2021).
[218] Ma P F, Chang H X, Ma Y X et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array[J]. Optics & Laser Technology, 140, 107016(2021).
[219] Müller M, Aleshire C, Klenke A et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 45, 3083-3086(2020).
[220] Chang H X, Chang Q, Xi J C et al. First experimental demonstration of coherent beam combining of more than 100 beams[J]. Photonics Research, 8, 1943-1948(2020).
[221] Liu Z J, Ma P F, Su R T et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect[J]. Journal of the Optical Society of America B, 34, A7-A14(2016).
[222] Stark H, Buldt J, Müller M et al. 1 kW, 10 mJ, 120 fs coherently combined fiber CPA laser system[J]. Optics Letters, 46, 969-972(2021).
[223] Stark H, Benner M, Buldt J et al. Pulses of 32 mJ and 158 fs at 20-kHz repetition rate from a spatiotemporally combined fiber laser system[J]. Optics Letters, 48, 3007-3010(2023).