[1] Le Harzic R, Huot N, Audouard E et al. Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy[J]. Applied Physics Letters, 80, 3886-3888(2002).
[2] Nolte S, Momma C, Jacobs H et al. Ablation of metals by ultrashort laser pulses[J]. Journal of the Optical Society of America B, 14, 2716-2722(1997).
[3] Tian M Y, Zuo P, Liang M S et al. Femtosecond laser processing of low-dimensional nanomaterials and its application[J]. Chinese Journal of Lasers, 48, 0202004(2021).
[4] Liu S Q, Hu J, Zhao M J. Femtosecond laser-induced periodic surface structure and its applications[J]. Chinese Science Bulletin, 61, 1560-1573(2016).
[5] Shi X S. Novel methods for femtosecond laser micromaching of controllable micro-/ nano- structures and applications based on electrons dynamics control[D](2016).
[6] Tang Y F, Yang J J, Zhao B et al. Control of periodic ripples growth on metals by femtosecond laser ellipticity[J]. Optics Express, 20, 25826-25833(2012).
[7] Xia B, Jiang L, Wang S M et al. Femtosecond laser drilling of micro-holes[J]. Chinese Journal of Lasers, 40, 0201001(2013).
[8] Liang M S, Li X, Wang M M et al. Spatially-shaped femtosecond laser manufacturing of microgrooves in metals[J]. Chinese Journal of Lasers, 48, 0202003(2021).
[9] Fan P X, Long J Y, Jiang D F et al. Study on ultrafast laser fabrication of UV-FIR ultra-broad-band antireflection surface micro-nano structures and their properties[J]. Chinese Journal of Lasers, 42, 0706003(2015).
[10] Mao Z W, Cao W, Hu J et al. A dual-functional surface with hierarchical micro/nanostructure arrays for self-cleaning and antireflection[J]. RSC Advances, 7, 49649-49654(2017).
[11] Fan P X, Zhong M L. Progress on ultrafast laser fabricating metal surface micro-nano antireflection structures[J]. Infrared and Laser Engineering, 45, 0621001(2016).
[12] Zhang Y Q, Dong H X, Li Q S et al. Double-layer metal mesh etched by femtosecond laser for high-performance electromagnetic interference shielding window[J]. RSC Advances, 9, 22282-22287(2019).
[13] Yang Q B, Deng B, Wang Y T et al. Superhydrophobic surface of aluminium base induced by femtosecond laser[J]. Laser & Optoelectronics Progress, 54, 101408(2017).
[14] Zhang J Z, Chen F, Yong J L et al. Research progress on bioinspired superhydrophobic surface induced by femtosecond laser[J]. Laser & Optoelectronics Progress, 55, 110001(2018).
[15] Wu B, Zhou M, Li B J et al. Fabrication of stainless steel surface with high adhesive superhydrophobicity by femtosecond laser combined hydrothermal method[J]. Journal of Functional Materials, 44, 3658-3662(2013).
[16] Zhao W R, Xiao L, He X Y et al. Moth-eye-inspired texturing surfaces enabled self-cleaning aluminum to achieve photothermal anti-icing[J]. Optics & Laser Technology, 141, 107115(2021).
[17] Bai X, Chen F. Recent advances in femtosecond laser-induced superhydrophobic surfaces[J]. Acta Optica Sinica, 41, 0114003(2021).
[18] Zhang K H. Mechanisms of micro/nano processing with temporally shaped femtosecond irradiation via electron dynamics control[D](2015).
[19] Lu Y. The study of femtosecond laser ablation and electrochemical deposition on metal surface through mask effect[D](2016).
[20] Chen Z J, Yang J, Liu H B et al. A short review on functionalized metallic surfaces by ultrafast laser micromachining[J]. The International Journal of Advanced Manufacturing Technology, 119, 6919-6948(2022).
[21] Xiao Q, Xu R. Research progress in surface micro-nano structure of materials prepared by ultrafast laser[J]. China Surface Engineering, 33, 1-17(2020).
[22] Long J Y, Fan P X, Gong D W et al. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal[J]. ACS Applied Materials & Interfaces, 7, 9858-9865(2015).
[23] Zhang M C, Liu Z Y, Pan N et al. Wetting mechanism of stainless steel micro-nano structure surface prepared by femtosecond laser[J]. Chinese Journal of Lasers, 48, 1802001(2021).
[24] Liu K J, Li X H, Wang K et al. High-spatial frequency periodic structures induced on Ti surface by femtosecond laser pulses[J]. High Power Laser and Particle Beams, 29, 049001(2017).
[25] Li C, Cheng G H, Razvan S. Investigation of femtosecond laser-induced periodic surface structure on tungsten[J]. Acta Optica Sinica, 36, 0532001(2016).
[26] Pan R, Zhang H J, Zhong M L. Ultrafast laser hybrid fabrication and ice-resistance performance of a triple-scale micro/nano superhydrophobic surface[J]. Chinese Journal of Lasers, 48, 0202009(2021).
[27] Cui M Y, Huang T, Xiao R S. Femtosecond laser direct writing of copper microstructures with high efficiency via thermal effect of nanoparticles[J]. Chinese Journal of Lasers, 49, 0802015(2022).
[28] Zhao Q, Wan H, Yu S T et al. Investigation of flexible nanoporous silver materials fabricated by femtosecond laser[J]. Chinese Journal of Lasers, 48, 0802009(2021).
[29] Song Y X, Wang C, Dong X R et al. Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser[J]. Optics & Laser Technology, 102, 25-31(2018).
[30] Li X, Li M, Liu H J. Effective strategy to achieve a metal surface with ultralow reflectivity by femtosecond laser fabrication[J]. Chinese Optics Letters, 19, 051401(2021).
[31] Fan P X, Wu H, Zhong M L et al. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion[J]. Nanoscale, 8, 14617-14624(2016).
[32] Fan P X, Bai B F, Zhong M L et al. General strategy toward dual-scale-controlled metallic micro-nano hybrid structures with ultralow reflectance[J]. ACS Nano, 11, 7401-7408(2017).
[33] Bonse J, Krüger J, Höhm S et al. Femtosecond laser-induced periodic surface structures[J]. Journal of Laser Applications, 24, 042006(2012).
[34] Albu C, Dinescu A, Filipescu M et al. Periodical structures induced by femtosecond laser on metals in air and liquid environments[J]. Applied Surface Science, 278, 347-351(2013).
[35] Liu Y H, Tseng Y K, Cheng C W. Direct fabrication of rotational femtosecond laser-induced periodic surface structure on a tilted stainless steel surface[J]. Optics & Laser Technology, 134, 106648(2021).
[36] Qiao H Z, Liang G, Shu F J et al. Periodic surface nanostructures induced by orthogonal femtosecond laser pulses on tungsten[J]. Optik, 251, 168354(2022).
[37] Vorobyev A Y, Guo C L. Femtosecond laser-induced periodic surface structure formation on tungsten[J]. Journal of Applied Physics, 104, 063523(2008).
[38] Lu J L, Huang T, Xiao R S. Influence of femtosecond laser structuring on photocatalytic properties of TiO2 fabricated by NaOH hydrothermal treatment[J]. China Surface Engineering, 30, 101-107(2017).
[39] Liu H L, Hu J, Jiang L et al. Ultrabroad antireflection urchin-like array through synergy of inverse fabrications by femtosecond laser-tuned chemical process[J]. Applied Surface Science, 528, 146804(2020).
[40] Shi H, Lin Y H, Jia T Q et al. Efficient processing of super-hydrophobic biomimetic structures on stainless steel surfaces by spatiotemporal interference of two femtosecond laser beams based on spatial light modulator[J]. Acta Photonica Sinica, 50, 0650110(2021).
[41] Cao W. Surface micro/nanostructures induced on the silicon by femtosecond laser and their SERS applications[D](2017).
[42] Feng P. Femtosecond laser-induced large-area uniform surface micro/nanostructures and applications[D](2016).
[43] Fang Y, Yong J L, Huo J L et al. Bioinspired slippery surface fabricated by femtosecond laser and its applications[J]. Laser & Optoelectronics Progress, 57, 111413(2020).
[44] Dong Z L, Sun X Y, Kong D J et al. Spatial light modulated femtosecond laser ablated durable superhydrophobic copper mesh for oil-water separation and self-cleaning[J]. Surface and Coatings Technology, 402, 126254(2020).
[45] Zhang J Z, Chen F, Yang Q et al. A widely applicable method to fabricate underwater superoleophobic surfaces with low oil-adhesion on different metals by a femtosecond laser[J]. Applied Physics A, 123, 594(2017).
[46] Wu B, Zhou M, Li J et al. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser[J]. Applied Surface Science, 256, 61-66(2009).
[47] Huang T, Lu J L, Xiao R S et al. Enhanced photocatalytic properties of hierarchical three-dimensional TiO2 grown on femtosecond laser structured titanium substrate[J]. Applied Surface Science, 403, 584-589(2017).
[48] Yin K, Chu D K, Dong X R et al. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation[J]. Nanoscale, 9, 14229-14235(2017).
[49] Li G Q, Fan H, Ren F F et al. Multifunctional ultrathin aluminum foil: oil/water separation and particle filtration[J]. Journal of Materials Chemistry A, 4, 18832-18840(2016).
[50] Ye S, Cao Q, Wang Q S et al. A highly efficient, stable, durable, and recyclable filter fabricated by femtosecond laser drilling of a titanium foil for oil-water separation[J]. Scientific Reports, 6, 37591(2016).
[51] Sun X Y, Dong Z L, Cheng K F et al. Fabrication of oil-water separation copper filter by spatial light modulated femtosecond laser[J]. Journal of Micromechanics and Microengineering, 30, 065007(2020).
[52] Khan A Q, Yuan S, Niu S et al. Photocatalytic dye degradation with copper-titanium dioxide nanocomposites under sunlight and visible light irradiation[J]. Materials Research Express, 5, 015030(2018).
[53] Huang T, Lu J L, Zhang X et al. Femtosecond laser fabrication of anatase TiO2 micro-nanostructures with chemical oxidation and annealing[J]. Scientific Reports, 7, 2089(2017).
[54] Liang M S, Li X, Jiang L et al. Femtosecond laser mediated fabrication of micro/nanostructured TiO2-x photoelectrodes: hierarchical nanotubes array with oxygen vacancies and their photocatalysis properties[J]. Applied Catalysis B: Environmental, 277, 119231(2020).
[55] Song G M, Zhou F, Wu Y L et al. Research on machining technology of nozzle hole based on femtosecond laser[J]. Automobile Technology & Material, 23-27(2021).
[56] Wen R, Wang Q, Li X et al. Application of ultrafast laser processing technology in aeroengine manufacturing[J]. Electromachining & Mould, 56-59(2020).
[57] Liu K, Liu Z Y, Tao H Y et al. Research on femtosecond laser fabrication of adjustable micro-groove structure on aluminum alloy surface[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 45, 6-13(2022).
[58] Volpe A, Gaudiuso C, di Venere L et al. Direct femtosecond laser fabrication of superhydrophobic aluminum alloy surfaces with anti-icing properties[J]. Coatings, 10, 587(2020).
[59] Gaddam A, Sharma H, Karkantonis T et al. Anti-icing properties of femtosecond laser-induced nano and multiscale topographies[J]. Applied Surface Science, 552, 149443(2021).
[60] Yang G F, Zhang H, Li H W et al. Experimental study on the ice suppression characteristics of TC4 microstructure surface induced by femtosecond pulsed laser[J]. Surface and Coatings Technology, 405, 126558(2021).
[61] Wu X F, Bai Y F, Zhao H B et al. Femtosecond laser fabricate wetting function micro-and nanostructure on aerial aluminum alloys surface[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 39, 25-29, 50(2016).
[62] Xue L, Yu J Y, Ma X S et al. Femtosecond laser fabricated wetting copper surfaces and their anti-icing properties[J]. Aeronautical Manufacturing Technology, 61, 74-79(2018).
[63] Cui J, Zhang H, Zhai W et al. Experiment on ice suppression characteristics of TC4 microstructure surface induced by femtosecond pulse laser[J]. Acta Aeronautica et Astronautica Sinica, 42, 424032(2021).
[64] Long J Y, Wu Y C, Gong D W et al. Femtosecond laser fabricated superhydrophobic copper surfaces and their anti-icing properties[J]. Chinese Journal of Lasers, 42, 0706002(2015).
[65] Wu B, Zhou M, Li B J et al. Microstructures prepared with a femtosecond laser on medical 316L stainless steel surface and the blood compatibility study[J]. Journal of Functional Materials, 44, 3291-3295(2013).
[66] Wei S S, Li Y, Li J et al. Recent progress in femtosecond laser in treatment of ophthalmic keratoconus[J]. Chinese Journal of Lasers, 49, 1507103(2022).
[67] Liang C Y, Li B F, Wang H S et al. Femtosecond lasers induced micropatterns on magnesium alloy to promote cell proliferation[J]. Rare Metal Materials and Engineering, 43, 253-256(2014).
[68] Lu L B, Zhang J R, Jiao L S et al. Large-scale fabrication of nanostructure on bio-metallic substrate for surface enhanced Raman and fluorescence scattering[J]. Nanomaterials), 9, 916(2019).
[69] Luo X, Yao S L, Zhang H J et al. Biocompatible nano-ripples structured surfaces induced by femtosecond laser to rebel bacterial colonization and biofilm formation[J]. Optics & Laser Technology, 124, 105973(2020).
[70] He W Y, Yao P, Chu D K et al. Fabrication and cell-adhesion evaluation of laser-ablated microprotrusion or microgroove on titanium[J]. Chinese Journal of Lasers, 49, 1002605(2022).
[71] Yao Y S, Ge Z S, Chen Q B et al. Surface characteristics of medical Zr-based bulk metallic glass processed by femtosecond laser[J]. Laser & Optoelectronics Progress, 57, 111409(2020).
[72] Ma Y L, Jiang L, Hu J et al. Multifunctional 3D micro-nanostructures fabricated through temporally shaped femtosecond laser processing for preventing thrombosis and bacterial infection[J]. ACS Applied Materials & Interfaces, 12, 17155-17166(2020).