• Opto-Electronic Advances
  • Vol. 4, Issue 3, 200021-1 (2021)
Lei Zhu1, Xuesong Zhao1, Chen Liu1, Songnian Fu2,*..., Yuncai Wang2 and Yuwen Qin2|Show fewer author(s)
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2School of Information Engineering, Guangdong University of Technology, and Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangzhou 510006, China.
  • show less
    DOI: 10.29026/oea.2021.200021 Cite this Article
    Lei Zhu, Xuesong Zhao, Chen Liu, Songnian Fu, Yuncai Wang, Yuwen Qin. Flexible rotation of transverse optical field for 2D self-accelerating beams with a designated trajectory[J]. Opto-Electronic Advances, 2021, 4(3): 200021-1 Copy Citation Text show less

    Abstract

    Self-accelerating beams have the unusual ability to remain diffraction-free while undergo the transverse shift during the free-space propagation. We theoretically identify that the transverse optical field distribution of 2D self-accelerating beam is determined by the selection of the transverse Cartesian coordinates, when the caustic method is utilized for its trajectory design. Based on the coordinate-rotation method, we experimentally demonstrate a scheme to flexibly manipulate the rotation of transverse optical field for 2D self-accelerating beams under the condition of a designated trajectory. With this scheme, the transverse optical field can be rotated within a range of 90 degrees, especially when the trajectory of 2D self-accelerating beams needs to be maintained for free-space photonic interconnection.
    $ E(X,Z)=12πA(kx)exp{i[kxX+k2kx2Z+φ(kx)]}dkx=12πA(kx)exp[iψ(kx)]dkx,$(1)

    View in Article

    $\frac{{{\rm{d}}\psi \left( {{k_x}} \right)}}{{{\rm{d}}{k_x}}} = X - \frac{{{k_x}}}{{\sqrt {{k^2} - {k_x}^2} }}Z + \phi '\left( {{k_x}} \right) = 0\;.$(2)

    View in Article

    $\left[ {XθYθ} \right] = \left[ {cosθsinθsinθcosθ} \right]\left[ {f(Z)g(Z)} \right]\;.$(3)

    View in Article

    $\left[ {x0,θy0,θ} \right] = \left[ {cosθsinθsinθcosθ} \right]\left[ {f(Z)Zf(Z)g(Z)Zg(Z)} \right]\;,$(4)

    View in Article

    $\left[ {k0,x,θk0,y,θ} \right] = k\left[ {cosθsinθsinθcosθ} \right]\left[ {f(Z)g(Z)} \right]\;.$(5)

    View in Article

    $Wθ(xθ,yθ,kx,θ,ky,θ)=δ[xθx0,θ,yθy0,θ]δ[kx,θk0,x,θ,ky,θk0,y,θ]dZ,$(6)

    View in Article

    ${\varphi _\theta } = \int { - \frac{{\int {{x_\theta }{y_\theta }{W_\theta }{\rm{d}}{x_\theta }{\rm{d}}{y_\theta }} }}{{\int {{W_\theta }{\rm{d}}{x_\theta }{\rm{d}}{y_\theta }} }}{\rm{d}}{k_{x,\theta }}{\rm{d}}{k_{y,\theta }}} \;,$(7)

    View in Article

    $Wθ+90=δ(xθ+90x0,θ+90,yθ+90y0,θ+90)×δ(kx,θ+90k0,x,θ+90,ky,θ+90k0,y,θ+90)dZ=δ(yθy0,θ,xθ+x0,θ)×δ(ky,θk0,y,θ,kx,θ+k0,x,θ)dZ=Wθ. $(8)

    View in Article

    $\left\{ {X=7.7896×10-3Z23.9470×10-3Z+0.8750×10-3/mY=5.5445×10-3Z25.2862×10-3Z+1.6800×10-3/m} \right.\;.$(9)

    View in Article

    Lei Zhu, Xuesong Zhao, Chen Liu, Songnian Fu, Yuncai Wang, Yuwen Qin. Flexible rotation of transverse optical field for 2D self-accelerating beams with a designated trajectory[J]. Opto-Electronic Advances, 2021, 4(3): 200021-1
    Download Citation