• Infrared and Laser Engineering
  • Vol. 49, Issue 5, 20201009 (2020)
Chengyu Zhang, Xiao Liang, Fenzhi Wu, and Lin Zhang
Author Affiliations
  • Beijing Institute of Control Engineering, Beijing 100190, China
  • show less
    DOI: 10.3788/IRLA20201009 Cite this Article
    Chengyu Zhang, Xiao Liang, Fenzhi Wu, Lin Zhang. Overview of optical navigation for asteroid exploration descent and landing[J]. Infrared and Laser Engineering, 2020, 49(5): 20201009 Copy Citation Text show less
    References

    [1] Weiren Wu, Wangwang Liu, Yuping Jiang. Development and enlightenment of foreign deep space exploration from the moon to the outside world. Deep Space Exploration Research, 1-10(2011).

    [2] Rebdão J M. Space optical navigation techniques: an overview[C]8th Iberoamerican Optics Meeting 11th Latin American Meeting on Optics, Lasers, Applications. International Society f Optics Photonics, 2013, 8785: 87850J.

    [3] Bhaskaran S. Autonomous navigation f deep space missions[C]SpaceOps 2012, 2012: 1267135.

    [4] Olson C. Analysis of asteroid ling capabilities using autonomous optical navigation[D]. US: University of Texas at Austin, 2009.

    [5] Gaskell R W. Optical navigation near small bodies[J]. Spaceflight Mechanics, 2011, 140: 17051717 .

    [6] Peijian Ye, Yan Peng. Deep Space exploration and china's deep space exploration prospects. China Engineering Science, 8, 13-18(2006).

    [7] Dayi Wang, Xiangyu Huang. Overview of deep space exploration autonomous navigation and control technology. Space Control Technology and Application, 6-12(2009).

    [8] Gaskell R W. Determination of lmark topography from imaging data[C]25th Annual AAS Rocky Mountain Guidance Control Conference, 2002.

    [9] B G Williams. Technical challenges and results for navigation of NEAR Shoemaker. Johns Hopkins APL Technical Digest, 23, 34-45(2002).

    [10] T Kubota, T Hashimoto, S Sawai. An autonomous navigation and guidance system for MUSES-C asteroid landing. Acta Astronautica, 52, 125-131(2003).

    [11] Takashi K, Shujiro S, Tatsuaki H, et al. Robotics autonomous technology f asteroid sample return mission advanced robotics[C]12th International Conference on Advanced Robotics, 2005.

    [12] Godard B, Budnik F, Muñoz P, et al. bit determination of rosetta around comet 67pchuryumovgerasimenko[C]25th International Symposium on Space Flight Dynamics ( ISSFD), 2015.

    [13] Muñoz P, Budnik F, Companys V, et al. Rosetta navigation during ler delivery phase reconstruction of Philae descent trajecty rebound[C]25th International Symposium on Space Flight Dynamics ( ISSFD), 2015.

    [14] Lauer M, Kielbassa S, Pardo R. Optical measurements f attitude control shape reconstruction at the Rosetta flyby of asteroid Lutetia[C]International Symposium of Space Flight Dynamics (ISSFD), 2012.

    [15] de Santayana R P, Lauer M. Optical measurements f rosetta navigation near the comet[C]25th International Symposium on Space Flight Dynamics (ISSFD), 2015.

    [16] Mastrodemos N, Rush B, Vaughan D, et al. Optical navigation f Dawn at Vesta[C]21st AASAIAA Space Flight Mechanics Meeting, 2011.

    [17] B G Williams, P G Antreasian, E Carranza. OSIRIS-REx flight dynamics and navigation design. Space Science Reviews, 214, 69(2018).

    [18] Olds R, May A, Mario C, et al. The application of optical based feature tracking to OSIRISREx asteroid sample collection[C]American Astronautical Society Meeting, 2015: 15114.

    [19] Yang C, James M. Autonomous lmark based spacecraft navigation system[C]13th Annual AASAIAA Space Flight Mechanics Meeting, 2003.

    [20] Yang C, Johnson A E, Olson C, et al. Optical lmark detection f spacecraft navigation[C]13th Annual AASAIAA Space Flight Mechanics Meeting, 2003.

    [21] Gaskell R. Small body simulations f navigation approach ling[C]Space 2005, 2015: 6813.

    [22] T Miso, T Hashimoto, K Ninomiya. Optical guidance for autonomous landing of spacecraft. IEEE Transactions on Aerospace and Electronic Systems, 35, 459-473(1999).

    [23] Johnson E A, Mathies H L. Precise imagebased motion estimation f autonomous small body explation[C]Artificial Intelligence, Robotics Automation in Space, 1999, 440: 627.

    [24] Johnson A E, Cheng Y, Matthies L H. Machine vision f autonomous small body navigation[C]2000 IEEE Aerospace Conference. IEEE, 2000, 7: 661671.

    [25] Xiangyu Huang, Yantao Cui, Pingyuan Cui. Research on autonomous optical navigation of small objects landed by detectors. Chinese Journal of Electronics, 31, 659-661(2003).

    [26] Pingyuan Cui, Shengying Zhu, Yantao Cui. Research on autonomous optical navigation and guidance method for soft landing of small celestial body. Journal of Astronautics, 30, 2159-2164(2009).

    [27] Tian Yang, Cui Pingyuan, Cui Yitao. Research on navigation guidance methods in the deep space explation ling phase[C]The 6th Academic Annual Meeting of the Deep Space Explation Technology Professional Committee of the Chinese Astronautical Society the 863 Project "Deep Space Explation Space Experimental Technology" Proceedings of the Symposium, 2009. (in Chinese)

    [28] Wei Shao, Xiaohua Chang, Pingyuan Cui. Landing and navigation algorithm for small celestial bodies based on inertial navigation fusion feature matching. Journal of Astronautics, 31, 1748-1755(2010).

    [29] L Shuang, C Pingyuan. Landmark tracking based autonomous navigation schemes for landing spacecraft on asteroids. Acta Astronautica, 62, 391-403(2008).

    [30] Steiner T J, Brady T M, Hoffman J A. Graphbased terrain relative navigation with optimal lmark database ion[C]2015 IEEE Aerospace Conference. IEEE, 2015: 112.

    [31] Steffes S R, Monterroza F, Benhacine L, et al. Optical terrain relative navigation approaches to lunar bit, descent ling[C]AIAA Scitech 2019 Fum, 2019: 1178.

    [32] Dever C, Hamilton L, Truax R, et al. Guidedair visionbased navigation[C]24th AIAA Aerodynamic Decelerat Systems Technology Conference, 2017: 3723.

    [33] Cheng Y, Ansar A. Lmark based position estimation f pinpoint ling on mars[C]Proceedings of the 2005 IEEE International conference on Robotics Automation. IEEE, 2005: 15731578.

    [34] Johnson A E, San Martin A M. Motion estimation from laser ranging f autonomous comet ling[C]Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics Automation. Symposia Proceedings. IEEE, 2000, 1: 132138.

    [35] Carr J R, Sobek J S. Digital scene matching area crelat (DSMAC)[C]Image Processing F Missile Guidance. International Society f Optics Photonics, 1980, 238: 3641.

    [36] Pesce V, Aghamohammadi A, Lavagna M. Autonomous navigation & mapping of small bodies[C]2018 IEEE Aerospace Conference. IEEE, 2018: 110.

    [37] E E Palmer, J N Head, R W Gaskell. Mercator-Independent rover localization using stereophotoclinometry and panoramic images. Earth and Space Science, 3, 488-509(2016).

    [38] C A Raymond, R Jaumann, A Nathues. The Dawn topography investigation. Space Science Reviews, 163, 487-510(2011).

    [39] Herft U, Casas C. Trajecty preparation f the approach of spacecraft Rosetta to Comet 67PChuryumovGerasimenko[C]ISSFD2015 paper, International Symposium of Space Flight Dynamics, 2015.

    [40] D N DellaGiustina, C A Bennett, K Becker. Overcoming the challenges associated with image-based mapping of small bodies in preparation for the OSIRIS-REx mission to (101955) Bennu. Earth and Space Science, 5, 929-949(2018).

    [41] Capanna C, Jda L, Lamy P, et al. A new 3D reconstruction method of small solar system bodies[C]EPSCDPS Joint Meeting 2011, 2011: 945.

    [42] R W Gaskell, O S Barnouin‐Jha, D J Scheeres. Characterizing and navigating small bodies with imaging data. Meteoritics & Planetary Science, 43, 1049-1061(2008).

    [43] K Gwinner, F Scholten, F Preusker. Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: Characteristics and performance. Earth and Planetary Science Letters, 294, 506-519(2010).

    [44] Gaskell R, BarnouinJha O, Scheeres D, et al. Lmark navigation studies target acterization in the Hayabusa encounter with Itokawa[C]AIAAAAS Astrodynamics Specialist Conference Exhibit, 2006: 6660.

    [45] L Jorda, P L Lamy, R W Gaskell. Asteroid (2867) Steins: Shape, topography and global physical properties from OSIRIS observations. Icarus, 221, 1089-1100(2012).

    [46] A S Konopliv, S W Asmar, R S Park. The Vesta gravity field, spin pole and rotation period, landmark positions, and ephemeris from the Dawn tracking and optical data. Icarus, 240, 103-117(2014).

    [47] Gaskell R W. Automated lmark identification f spacecraft navigation[C] AASAIAA Astrodynamic Specialist Conference, 2001.

    [48] M A Shoemaker, C Wright, A J Liounis. Performance characterization of a landmark measurement system for ARRM terrain relative navigation. Spacelight Mechanics, 158, 3641-3660(2016).

    [49] Al Asad M M, Johnson C L, Barnoiun O S, et al. How good are our effts Evaluating the stereophotoclinometry (SPC)derived shape model of asteroid Bennu[C]Lunar Plaary Science Conference, 2019: 50.

    [50] Seabrook J, Daly M G, Barnouin O S, et al. Shape model construction of Bennu using the OSIRISREx laser altimeter (OLA)[C]Lunar Plaary Science Conference, 2017: 48.

    [51] Olson C. Sequential estimation methods f small body optical navigation[D]. US: University of Texas, 2016.

    [52] Junhua Feng, Yitao Cui, Pingyuan Cui. Method for detection and matching of craters on planet surface. Journal of Aeronautics, 31, 1858-1863(2010).

    [53] Meng Ding, Yunfeng Cao, Qingxian Wu. Detection of craters in lunar grayscale images. Journal of Applied Sciences, 27, 156-160(2009).

    [54] L Juan, L Gwon. A comparison of sift, pca-sift and surf. International Journal of Signal Processing, Image Processing and Pattern Recognition, 8, 169-176(2007).

    [55] Mastrodemos N, Rush B P, Owen W M. Optical navigation f the Rosetta mission[C]AAS Guidance Control Conference, 2015: 15123.

    [56] Mourikis A I, Roumeliotis S I. A multistate constraint Kalman filter f visionaided inertial navigation[C]Proceedings 2007 IEEE International Conference on Robotics Automation. IEEE, 2007: 35653572.

    [57] C Xu, D Wang, X Huang. Landmark-based autonomous navigation for pinpoint planetary landing. Advances in Space Research, 58, 2313-2327(2016).

    [58] Johnson A, Ansar A, Matthies L, et al. A general approach to terrain relative navigation f plaary ling[C]AIAA Infotech@ Aerospace 2007 Conference Exhibit, 2007: 2854.

    [59] Cheng Y, Johnson A, Matthies L. MERDIMES: a plaary ling application of computer vision[C]2005 IEEE Computer Society Conference on Computer Vision Pattern Recognition (CVPR''05). IEEE, 2005, 1: 806813.

    [60] A I Mourikis, N Trawny, S I Roumeliotis. Vision-aided inertial navigation for spacecraft entry, descent, and landing. IEEE Transactions on Robotics, 25, 264-280(2009).

    [61] Mastrodemos N, Rush B, Vaughan D, et al. Optical navigation f the dawn mission at Vesta[C]Proceedings of the 23rd International Symposium on Space Flight Dynamics, 2012.

    [62] S Bhaskaran, S Nandi, S Broschart. Small body landings using autonomous onboard optical navigation. The Journal of the Astronautical Sciences, 58, 409-427(2011).

    [63] Gaskell R W. Lmark navigation target acterization in a simulated Itokawa encounter[C]2005 AASAIAA Astrodynamics Specialist Conference, 2005.

    [64] Mario C, Debrunner C. Robustness perfmance impacts of opticalbased feature tracking to OSIRISREx asteroid sample collection mission[C]39th Annual AAS Guidance Control Conference, 2015.

    [65] Lenz D A, Olds R, May A, et al. Lessons learned from OSIRISRex autonomous navigation using natural feature tracking[C]2017 IEEE Aerospace Conference. IEEE, 2017: 112.

    [66] McEwen A S. A precise lunar photometric function[C]Lunar Plaary Science Conference, 1996: 27.

    [67] Wright C A, Van Eepoel J, Liounis A, et al. Relative terrain imaging navigation (RETINA) tool f the asteroid redirect robotic mission (ARRM)[C]Guidance Control Conference, 2016.

    [68] Gnam C, Liounis A, Ashman B, et al. A novel surface feature navigation algithm using ray tracing[C]2nd RPI Space Imaging Wkshop, 2019.

    [69] Kicman P, Lisowski J, BidauxSokolowski A. Visionbased navigation around small bodies[C]Astrodynamics wk AstroII, 2016: 137149.

    [70] Campbell T, Furfaro R, Linares R, et al. A deep learning approach f optical autonomous plaary relative terrain navigation[C]27th AASAIAA Space Flight Mechanics Meeting, 2017: 32933302.

    [71] Furfaro R, Law A M. Relative optical navigation around small bodies via extreme learning machines[C]AASAIAA Astrodynamics Specialist Conference, 2015, 2016: 19591978.

    CLP Journals

    [1] Jianchao Jiao, Chao Wang, Yue Yu, Chenhui Guan, Mingyang Hou, Wenyu Zhang. Lightweight and high-sensitive optical camera technology for faint space target detection[J]. Infrared and Laser Engineering, 2023, 52(5): 20220709

    Chengyu Zhang, Xiao Liang, Fenzhi Wu, Lin Zhang. Overview of optical navigation for asteroid exploration descent and landing[J]. Infrared and Laser Engineering, 2020, 49(5): 20201009
    Download Citation