• Chinese Optics Letters
  • Vol. 23, Issue 2, 021901 (2025)
Ilia Artser*, Maksim Melnik**, Anton Tcypkin, Igor Gurov, and Sergei Kozlov
Author Affiliations
  • Laboratory of Femtosecond and Femtotechnologies, ITMO University, St. Petersburg 197101, Russia
  • show less
    DOI: 10.3788/COL202523.021901 Cite this Article Set citation alerts
    Ilia Artser, Maksim Melnik, Anton Tcypkin, Igor Gurov, Sergei Kozlov, "Wave interference under self-phase modulation and triple frequency generation owing to few-cycle terahertz pulses propagating in a cubic nonlinear medium," Chin. Opt. Lett. 23, 021901 (2025) Copy Citation Text show less
    References

    [1] C. Korpa, G. Tóth, J. Hebling. Interplay of diffraction and nonlinear effects in the propagation of ultrashort pulses. J. Phys. B, 49, 035401(2016).

    [2] K. Dolgaleva, D. V. Materikina, R. W. Boyd et al. Prediction of an extremely large nonlinear refractive index for crystals at terahertz frequencies. Phys. Rev. A, 92, 023809(2015).

    [3] A. N. Tcypkin, M. V. Melnik, M. O. Zhukova et al. High Kerr nonlinearity of water in THz spectral range. Opt. Express, 27, 10419(2019).

    [4] K. J. G. Francis, M. L. P. Chong, E. Yiwen et al. Terahertz nonlinear index extraction via full-phase analysis. Opt. Lett., 45, 5628(2020).

    [5] A. Tcypkin, M. Zhukova, M. Melnik et al. Giant third-order nonlinear response of liquids at terahertz frequencies. Phys. Rev. Appl., 15, 054009(2021).

    [6] S. Zibod, P. Rasekh, M. Yildrim et al. Strong nonlinear response in crystalline quartz at THz frequencies. Adv. Opt. Mater., 11, 2202343(2023).

    [7] M. Guselnikov, M. Zhukova, S. Kozlov. Inertia of the oscillatory mechanisms of giant nonlinearities of optical materials in the terahertz spectral range. J. Opt. Technol., 89, 371(2022).

    [8] C. P. Hauri, C. Ruchert, C. Vicario et al. Strong-field single-cycle THz pulses generated in an organic crystal. Appl. Phys. Lett., 99, 161116(2011).

    [9] R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov et al. Coherently controlled generation of single-cycle terahertz pulses from a thin layer of nonlinear medium with low-frequency resonances. Phys. Rev. A, 101, 043838(2020).

    [10] C. Meineke, M. Prager, J. Hayes et al. Scalable high-repetition- rate sub-half-cycle terahertz pulses from spatially indirect interband transitions. Light Sci. Appl., 11, 151(2022).

    [11] X. Ropagnol, X. Chai, S. M. Raeis-Zadeh et al. Generation of intense sub-cycle terahertz pulses with variable elliptical polarization. Appl. Phys. Lett., 120, 171106(2022).

    [12] S. Kozlov, A. Drozdov, S. Choudhary et al. Suppression of self-focusing for few-cycle pulses. J. Opt. Soc. Am. B, 36, G68(2019).

    [13] F. Novelli, C. Hoberg, E. M. Adams et al. Terahertz pump–probe of liquid water at 12.3 THz. Phys. Chem. Chem. Phys., 24, 653(2022).

    [14] S. V. Sazonov. Optical rectification and generation of harmonics under condition of propagation of few-cycle pulses in the birefringent medium with asymmetric molecules. J. Russ. Laser Res., 39, 252(2018).

    [15] A. A. Drozdov, S. A. Kozlov, A. A. Sukhorukov et al. Self-phase modulation and frequency generation with few-cycle optical pulses in nonlinear dispersive media. Phys. Rev. A, 86, 053822(2012).

    [16] I. Artser, M. Melnik, A. Ismagilov et al. Radiation shift from triple to quadruple frequency caused by the interaction of terahertz pulses with a nonlinear Kerr medium. Sci. Rep., 12, 9019(2022).

    [17] M. Nagai, E. Matsubara, M. Ashida. High-efficiency terahertz pulse generation via optical rectification by suppressing stimulated Raman scattering process. Opt. Express, 20, 6509(2012).

    [18] X. Chai, X. Ropagnol, S. M. Raeis-Zadeh et al. Subcycle terahertz nonlinear optics. Phys. Rev. Lett., 121, 143901(2018).

    [19] F. Novelli, C. Y. Ma, N. Adhlakha et al. Nonlinear terahertz transmission by liquid water at 1 THz. Appl. Sci., 10, 5290(2020).

    [20] S. Sazonov, N. Ustinov. New soliton regime of generation of broadband terahertz radiation by laser pulses with tilted wave fronts. JETP Lett., 118, 408(2023).

    [21] S. Kozlov, V. V. Samartsev. Fundamentals of Femtosecond Optics(2013).

    [22] Y. A. Kapoyko, A. A. Drozdov, S. A. Kozlov et al. Evolution of few-cycle pulses in nonlinear dispersive media: velocity of the center of mass and root-mean-square duration. Phys. Rev. A, 94, 033803(2016).

    [23] T.-J. Wang, J. Ju, Y. Liu et al. Waveform control of enhanced THz radiation from femtosecond laser filament in air. Appl. Phys. Lett., 110, 221102(2017).

    [24] Y. Kawada, T. Yasuda, H. Takahashi. Carrier envelope phase shifter for broadband terahertz pulses. Opt. Lett., 41, 986(2016).

    [25] D. Giannotti, E. Suerra, F. Canella et al. Carrier-envelope offset frequency measurement by means of an external optical resonator. Front. Phys., 11, 1197654(2023).

    [26] M. Schall, H. Helm, S. Keiding. Far infrared properties of electrooptic crystals measured by THz time-domain spectroscopy. J. Infrared Millim. Terahertz Waves, 20, 595(1999).

    [27] M. Zhukova, M. Melnik, I. Vorontsova et al. Estimations of low-inertia cubic nonlinearity featured by electro-optical crystals in the THz range. Photonics, 7, 98(2020).

    [28] I. Artser, M. Melnik, A. Tsypkin et al. The spectrum broadening of a single-cycle terahertz pulse caused by phase self-modulation in a nonlinear medium and the spectrum of radiation generated in its field at tripled frequencies. Comput. Opt., 48, 61(2024).

    [29] N. N. Rosanov. Area of ultimately short light pulses. Opt. Spectrosc., 107, 721(2009).

    [30] N. N. Rosanov, R. M. Arkhipov, M. V. Arkhipov. On laws of conservation in the electrodynamics of continuous media (on the occasion of the 100th anniversary of the SI Vavilov State Optical Institute). Phys.-Uspekhi, 61, 1227(2018).

    [31] A. V. Pakhomov, N. N. Rosanov, M. V. Arkhipov et al. Electric area conservation rule and the validity of some models of subcycle pulse propagation. JETP Lett., 119, 94(2024).

    [32] A. Pakhomov, N. Rosanov, M. Arkhipov et al. Sub-10 fs unipolar pulses of a tailored waveshape from a multilevel resonant medium. Opt. Lett., 48, 6504(2023).

    [33] D. S. Citrin. Quasi-half-cycle terahertz pulse generation via optical rectification in quantum wells using shaped optical pulses. Opt. Express, 1, 376(1997).

    [34] A. Bogatskaya, E. Volkova, A. Popov. Three-dimensional modeling of intense unipolar THz pulses formation during their amplification in nonequilibrium extended xe plasma channel. Phys. Rev. E, 105, 055203(2022).

    [35] I. Ilyakov, B. Shishkin, E. Efimenko et al. Experimental observation of optically generated unipolar electromagnetic precursors. Opt. Express, 30, 14978(2022).

    [36] A. N. Bugay, S. V. Sazonov. The generation of terahertz radiation via optical rectification in the self-induced transparency regime. Phys. Lett. A, 374, 1093(2010).

    [37] A. A. Ezerskaya, D. V. Ivanov, S. A. Kozlov et al. Spectral approach in the analysis of pulsed terahertz radiation. J. Infrared Millim. Terahertz Waves, 33, 926(2012).

    [38] A. Nabilkova, A. Ismagilov, M. Melnik et al. Sensitivity enhancement of cubic nonlinearity measurement in THz frequency range. IEEE Trans. Terahertz Sci. Technol.(2024).

    Ilia Artser, Maksim Melnik, Anton Tcypkin, Igor Gurov, Sergei Kozlov, "Wave interference under self-phase modulation and triple frequency generation owing to few-cycle terahertz pulses propagating in a cubic nonlinear medium," Chin. Opt. Lett. 23, 021901 (2025)
    Download Citation